Normalized defining polynomial
\( x^{6} + 11 x^{4} - 5 x^{2} - 47 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(664467200=2^{8}\cdot 5^{2}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{3}{8}$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{2} a^{2} + \frac{11}{2} \), \( a^{2} + 2 \), \( \frac{29}{8} a^{5} - \frac{21}{4} a^{4} + \frac{95}{2} a^{3} - \frac{275}{4} a^{2} + \frac{655}{8} a - \frac{237}{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 226.18414471 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.3.940.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.0.3760.1 $\times$ \(\Q(\sqrt{5}) \) |
| Degree 6 sibling: | 6.2.17672000.1 |
| Degree 8 siblings: | 8.0.499679334400.6, 8.0.353440000.2 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.6.9 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2_5_47.2t1.1c1 | $1$ | $ 2^{2} \cdot 5 \cdot 47 $ | $x^{2} - 235$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2_47.2t1.1c1 | $1$ | $ 2^{2} \cdot 47 $ | $x^{2} - 47$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.2e2_5_47.6t3.1c1 | $2$ | $ 2^{2} \cdot 5 \cdot 47 $ | $x^{6} - 3 x^{5} - 5 x^{4} + 14 x^{3} + 9 x^{2} - 15 x - 5$ | $D_{6}$ (as 6T3) | $1$ | $2$ | |
| * | 2.2e2_5_47.3t2.2c1 | $2$ | $ 2^{2} \cdot 5 \cdot 47 $ | $x^{3} - 7 x - 4$ | $S_3$ (as 3T2) | $1$ | $2$ |
| 3.2e4_5_47.4t5.1c1 | $3$ | $ 2^{4} \cdot 5 \cdot 47 $ | $x^{4} - 2 x^{3} - x^{2} + 5$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.2e6_5_47e2.6t11.1c1 | $3$ | $ 2^{6} \cdot 5 \cdot 47^{2}$ | $x^{6} + 11 x^{4} - 5 x^{2} - 47$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ |
| 3.2e4_5e2_47.6t11.3c1 | $3$ | $ 2^{4} \cdot 5^{2} \cdot 47 $ | $x^{6} + 11 x^{4} - 5 x^{2} - 47$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| 3.2e6_5e2_47e2.6t8.1c1 | $3$ | $ 2^{6} \cdot 5^{2} \cdot 47^{2}$ | $x^{4} - 2 x^{3} - x^{2} + 5$ | $S_4$ (as 4T5) | $1$ | $-1$ |