Properties

Label 6.2.6144000.1
Degree $6$
Signature $[2, 2]$
Discriminant $2^{14}\cdot 3\cdot 5^{3}$
Root discriminant $13.53$
Ramified primes $2, 3, 5$
Class number $2$
Class group $[2]$
Galois group $C_3^2:D_4$ (as 6T13)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, -12, -11, -4, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 4*x^4 - 4*x^3 - 11*x^2 - 12*x - 6)
 
gp: K = bnfinit(x^6 - 4*x^4 - 4*x^3 - 11*x^2 - 12*x - 6, 1)
 

Normalized defining polynomial

\( x^{6} - 4 x^{4} - 4 x^{3} - 11 x^{2} - 12 x - 6 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6144000=2^{14}\cdot 3\cdot 5^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{4}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{5}{8} a^{3} - \frac{5}{8} a^{2} - \frac{5}{4} a - \frac{11}{4} \),  \( \frac{7}{8} a^{5} - \frac{5}{8} a^{4} - \frac{27}{8} a^{3} - \frac{7}{8} a^{2} - \frac{31}{4} a - \frac{17}{4} \),  \( \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - 2 a^{3} - \frac{1}{4} a^{2} - 5 a - \frac{5}{2} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 25.7070308797 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 6T13):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $C_3^2:D_4$
Character table for $C_3^2:D_4$

Intermediate fields

\(\Q(\sqrt{10}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 6.2.2211840.1
Degree 6 sibling: 6.2.2211840.1
Degree 9 sibling: 9.1.14155776000.1
Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12
Degree 18 siblings: Deg 18, Deg 18, Deg 18
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.2$x^{2} + 6$$2$$1$$3$$C_2$$[3]$
2.4.11.20$x^{4} + 6$$4$$1$$11$$D_{4}$$[2, 3, 4]$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
$5$5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e2_3_5.2t1.1c1$1$ $ 2^{2} \cdot 3 \cdot 5 $ $x^{2} - 15$ $C_2$ (as 2T1) $1$ $1$
* 1.2e3_5.2t1.1c1$1$ $ 2^{3} \cdot 5 $ $x^{2} - 10$ $C_2$ (as 2T1) $1$ $1$
1.2e3_3.2t1.1c1$1$ $ 2^{3} \cdot 3 $ $x^{2} - 6$ $C_2$ (as 2T1) $1$ $1$
2.2e8_3_5.4t3.14c1$2$ $ 2^{8} \cdot 3 \cdot 5 $ $x^{4} + 16 x^{2} + 40$ $D_{4}$ (as 4T3) $1$ $-2$
4.2e13_3e3_5e2.12t34.2c1$4$ $ 2^{13} \cdot 3^{3} \cdot 5^{2}$ $x^{6} - 4 x^{4} - 4 x^{3} - 11 x^{2} - 12 x - 6$ $C_3^2:D_4$ (as 6T13) $1$ $0$
* 4.2e11_3_5e2.6t13.1c1$4$ $ 2^{11} \cdot 3 \cdot 5^{2}$ $x^{6} - 4 x^{4} - 4 x^{3} - 11 x^{2} - 12 x - 6$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.2e11_3e2_5.6t13.1c1$4$ $ 2^{11} \cdot 3^{2} \cdot 5 $ $x^{6} - 4 x^{4} - 4 x^{3} - 11 x^{2} - 12 x - 6$ $C_3^2:D_4$ (as 6T13) $1$ $0$
4.2e13_3e2_5e3.12t34.2c1$4$ $ 2^{13} \cdot 3^{2} \cdot 5^{3}$ $x^{6} - 4 x^{4} - 4 x^{3} - 11 x^{2} - 12 x - 6$ $C_3^2:D_4$ (as 6T13) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.