Normalized defining polynomial
\( x^{6} - 4 x^{3} - 3 x^{2} - 12 x - 2 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5971968=2^{13}\cdot 3^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{9}{8} a^{2} - \frac{3}{4} a - \frac{1}{4} \), \( \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{5}{8} a^{3} - \frac{11}{8} a^{2} - \frac{3}{4} a - \frac{3}{4} \), \( \frac{1}{2} a^{5} - \frac{7}{4} a^{4} - a^{3} + \frac{5}{4} a^{2} + 9 a - \frac{5}{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43.3389596921 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 6T13):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3^2:D_4$ |
| Character table for $C_3^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{6}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 6.2.1492992.1 |
| Degree 6 sibling: | 6.2.1492992.1 |
| Degree 9 sibling: | 9.1.30958682112.1 |
| Degree 12 siblings: | 12.4.570630428688384.1, 12.0.1711891286065152.5, 12.4.570630428688384.2, 12.0.6847565144260608.26, 12.0.213986410758144.1, 12.0.3423782572130304.4 |
| Degree 18 siblings: | Deg 18, 18.2.490721279033276815638528.1, Deg 18 |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.4.10.6 | $x^{4} + 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| $3$ | 3.6.6.6 | $x^{6} + 3 x + 3$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.2e3_3.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} - 6$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e2_3.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 $ | $x^{2} - 3$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.2e7_3e2.4t3.5c1 | $2$ | $ 2^{7} \cdot 3^{2}$ | $x^{4} + 6 x^{2} + 6$ | $D_{4}$ (as 4T3) | $1$ | $-2$ | |
| * | 4.2e10_3e5.6t13.1c1 | $4$ | $ 2^{10} \cdot 3^{5}$ | $x^{6} - 4 x^{3} - 3 x^{2} - 12 x - 2$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |
| 4.2e12_3e5.12t36.1c1 | $4$ | $ 2^{12} \cdot 3^{5}$ | $x^{6} - 4 x^{3} - 3 x^{2} - 12 x - 2$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| 4.2e9_3e5.6t13.1c1 | $4$ | $ 2^{9} \cdot 3^{5}$ | $x^{6} - 4 x^{3} - 3 x^{2} - 12 x - 2$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| 4.2e13_3e5.12t34.1c1 | $4$ | $ 2^{13} \cdot 3^{5}$ | $x^{6} - 4 x^{3} - 3 x^{2} - 12 x - 2$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |