Normalized defining polynomial
\( x^{6} - x^{5} + 11 x^{4} - 32 x^{3} + 44 x^{2} - 256 x + 304 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(585640000=2^{6}\cdot 5^{4}\cdot 11^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{1336} a^{5} + \frac{27}{1336} a^{4} + \frac{99}{1336} a^{3} - \frac{75}{167} a^{2} - \frac{7}{167} a - \frac{61}{167}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{3}{334} a^{5} - \frac{5}{668} a^{4} + \frac{93}{668} a^{3} - \frac{93}{668} a^{2} + \frac{83}{167} a - \frac{398}{167} \), \( \frac{5}{1336} a^{5} - \frac{199}{1336} a^{4} + \frac{829}{1336} a^{3} - \frac{1333}{668} a^{2} + \frac{800}{167} a - \frac{639}{167} \), \( \frac{19}{1336} a^{5} + \frac{1181}{1336} a^{4} + \frac{1213}{1336} a^{3} + \frac{991}{334} a^{2} - \frac{2304}{167} a + \frac{1346}{167} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72.6731021389 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3.C_2$ (as 6T10):
| A solvable group of order 36 |
| The 6 conjugacy class representatives for $C_3^2:C_4$ |
| Character table for $C_3^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 6.2.4840000.2 |
| Degree 6 sibling: | 6.2.4840000.2 |
| Degree 9 sibling: | 9.1.113379904000000.1 |
| Degree 12 siblings: | Deg 12, Deg 12 |
| Degree 18 sibling: | Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e3_5.4t1.2c1 | $1$ | $ 2^{3} \cdot 5 $ | $x^{4} + 10 x^{2} + 20$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.2e3_5.4t1.2c2 | $1$ | $ 2^{3} \cdot 5 $ | $x^{4} + 10 x^{2} + 20$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| * | 4.2e6_5e3_11e4.6t10.2c1 | $4$ | $ 2^{6} \cdot 5^{3} \cdot 11^{4}$ | $x^{6} - x^{5} + 11 x^{4} - 32 x^{3} + 44 x^{2} - 256 x + 304$ | $C_3^2:C_4$ (as 6T10) | $1$ | $0$ |
| 4.2e6_5e3_11e2.6t10.2c1 | $4$ | $ 2^{6} \cdot 5^{3} \cdot 11^{2}$ | $x^{6} - x^{5} + 11 x^{4} - 32 x^{3} + 44 x^{2} - 256 x + 304$ | $C_3^2:C_4$ (as 6T10) | $1$ | $0$ |