Properties

Label 6.2.5611284433.1
Degree $6$
Signature $[2, 2]$
Discriminant $5611284433$
Root discriminant $42.15$
Ramified prime $1777$
Class number $2$
Class group $[2]$
Galois group $\PGL(2,5)$ (as 6T14)

Related objects

Downloads

Learn more

Show commands: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 8*x^4 + 45*x^3 - 211*x^2 + 293*x - 121)
 
gp: K = bnfinit(x^6 - 3*x^5 + 8*x^4 + 45*x^3 - 211*x^2 + 293*x - 121, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-121, 293, -211, 45, 8, -3, 1]);
 

\(x^{6} - 3 x^{5} + 8 x^{4} + 45 x^{3} - 211 x^{2} + 293 x - 121\)  Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[2, 2]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(5611284433\)\(\medspace = 1777^{3}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $42.15$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $1777$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$\card{ \Aut(K/\Q) }$:  $1$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2147} a^{5} + \frac{13}{113} a^{4} - \frac{505}{2147} a^{3} + \frac{468}{2147} a^{2} + \frac{851}{2147} a + \frac{490}{2147}$  Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)  Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( \frac{3374}{2147} a^{5} - \frac{321}{113} a^{4} + \frac{20171}{2147} a^{3} + \frac{174894}{2147} a^{2} - \frac{501663}{2147} a + \frac{412294}{2147} \),  \( \frac{34}{2147} a^{5} - \frac{10}{113} a^{4} + \frac{6}{2147} a^{3} + \frac{883}{2147} a^{2} - \frac{11859}{2147} a + \frac{5925}{2147} \),  \( \frac{717}{2147} a^{5} - \frac{58}{113} a^{4} + \frac{2905}{2147} a^{3} + \frac{41417}{2147} a^{2} - \frac{115519}{2147} a + \frac{61485}{2147} \)  Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 513.537962715 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{2}\cdot(2\pi)^{2}\cdot 513.537962715 \cdot 2}{2\sqrt{5611284433}}\approx 1.08258284342$

Galois group

$S_5$ (as 6T14):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A non-solvable group of order 120
The 7 conjugacy class representatives for $\PGL(2,5)$
Character table for $\PGL(2,5)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling algebras

Twin sextic algebra: \(\Q\) $\times$ 5.1.1777.1
Degree 5 sibling: 5.1.1777.1
Degree 10 siblings: 10.2.17718915581332657.1, 10.2.5611284433.1
Degree 12 sibling: Deg 12
Degree 15 sibling: Deg 15
Degree 20 siblings: Deg 20, Deg 20, Deg 20
Degree 24 sibling: Deg 24
Degree 30 siblings: Deg 30, Deg 30, Deg 30
Degree 40 sibling: Deg 40

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.5.0.1}{5} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.6.0.1}{6} }$ ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.3.0.1}{3} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{3}$ ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }$ ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$1777$Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$2$$2$$2$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.1777.2t1.a.a$1$ $ 1777 $ \(\Q(\sqrt{1777}) \) $C_2$ (as 2T1) $1$ $1$
4.5611284433.10t12.b.a$4$ $ 1777^{3}$ 6.2.5611284433.1 $\PGL(2,5)$ (as 6T14) $1$ $0$
4.1777.5t5.b.a$4$ $ 1777 $ 6.2.5611284433.1 $\PGL(2,5)$ (as 6T14) $1$ $0$
5.3157729.10t13.b.a$5$ $ 1777^{2}$ 6.2.5611284433.1 $\PGL(2,5)$ (as 6T14) $1$ $1$
* 5.5611284433.6t14.b.a$5$ $ 1777^{3}$ 6.2.5611284433.1 $\PGL(2,5)$ (as 6T14) $1$ $1$
6.5611284433.20t30.b.a$6$ $ 1777^{3}$ 6.2.5611284433.1 $\PGL(2,5)$ (as 6T14) $1$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.