Normalized defining polynomial
\( x^{6} - 2 x^{5} + 45 x^{4} - 132 x^{3} + 572 x^{2} - 1936 x + 228 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4982686912=2^{6}\cdot 7^{3}\cdot 61^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{46008} a^{5} - \frac{167}{7668} a^{4} + \frac{457}{15336} a^{3} - \frac{193}{639} a^{2} + \frac{6829}{23004} a - \frac{1547}{3834}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{35}{23004} a^{5} - \frac{47}{1917} a^{4} + \frac{659}{7668} a^{3} - \frac{821}{1278} a^{2} + \frac{20477}{11502} a - \frac{469}{1917} \), \( \frac{3}{2} a^{3} - \frac{3}{2} a^{2} + 33 a - 4 \), \( \frac{2959}{23004} a^{5} - \frac{742}{1917} a^{4} + \frac{48703}{7668} a^{3} - \frac{25483}{1278} a^{2} + \frac{941161}{11502} a - \frac{463691}{1917} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 678.066602936 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{427}) \), 3.1.244.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.1.244.1 $\times$ \(\Q(\sqrt{-7}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.0.20420848.4 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2_61.2t1.1c1 | $1$ | $ 2^{2} \cdot 61 $ | $x^{2} + 61$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.7.2t1.1c1 | $1$ | $ 7 $ | $x^{2} - x + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.2e2_7_61.2t1.1c1 | $1$ | $ 2^{2} \cdot 7 \cdot 61 $ | $x^{2} - 427$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 2.2e2_61.3t2.1c1 | $2$ | $ 2^{2} \cdot 61 $ | $x^{3} + x - 6$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.2e2_7e2_61.6t3.3c1 | $2$ | $ 2^{2} \cdot 7^{2} \cdot 61 $ | $x^{6} - 2 x^{5} + 45 x^{4} - 132 x^{3} + 572 x^{2} - 1936 x + 228$ | $D_{6}$ (as 6T3) | $1$ | $0$ |