Properties

Label 6.2.440657.1
Degree $6$
Signature $[2, 2]$
Discriminant $440657$
Root discriminant $8.72$
Ramified primes $7, 17, 23$
Class number $1$
Class group trivial
Galois group $S_4\times C_2$ (as 6T11)

Related objects

Downloads

Learn more

Show commands: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 - x^4 + 7*x^3 + 3*x^2 - 7*x - 11)
 
gp: K = bnfinit(x^6 - 3*x^5 - x^4 + 7*x^3 + 3*x^2 - 7*x - 11, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-11, -7, 3, 7, -1, -3, 1]);
 

\(x^{6} - 3 x^{5} - x^{4} + 7 x^{3} + 3 x^{2} - 7 x - 11\)  Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[2, 2]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(440657\)\(\medspace = 7^{2}\cdot 17\cdot 23^{2}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $8.72$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $7, 17, 23$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $2$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{5} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$  Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)  Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{2}{7} \),  \( \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - a^{3} + \frac{1}{7} a^{2} + \frac{11}{7} a + \frac{12}{7} \),  \( \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{4}{7} a^{3} - \frac{2}{7} a^{2} + \frac{9}{7} a + \frac{8}{7} \)  Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 3.30526701126 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{2}\cdot(2\pi)^{2}\cdot 3.30526701126 \cdot 1}{2\sqrt{440657}}\approx 0.393138833537$

Galois group

$C_2\times S_4$ (as 6T11):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 48
The 10 conjugacy class representatives for $S_4\times C_2$
Character table for $S_4\times C_2$

Intermediate fields

3.1.23.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: \(\Q(\sqrt{-391}) \) $\times$ 4.2.325703.1
Degree 6 sibling: 6.0.10135111.1
Degree 8 siblings: 8.0.56117612986561.1, 8.4.106082444209.1
Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12
Degree 16 sibling: Deg 16
Degree 24 siblings: Deg 24, Deg 24, Deg 24, Deg 24

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{2}$ ${\href{/padicField/3.6.0.1}{6} }$ ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ R ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.3.0.1}{3} }^{2}$ R ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ R ${\href{/padicField/29.6.0.1}{6} }$ ${\href{/padicField/31.6.0.1}{6} }$ ${\href{/padicField/37.2.0.1}{2} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }$ ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.391.2t1.a.a$1$ $ 17 \cdot 23 $ \(\Q(\sqrt{-391}) \) $C_2$ (as 2T1) $1$ $-1$
1.23.2t1.a.a$1$ $ 23 $ \(\Q(\sqrt{-23}) \) $C_2$ (as 2T1) $1$ $-1$
1.17.2t1.a.a$1$ $ 17 $ \(\Q(\sqrt{17}) \) $C_2$ (as 2T1) $1$ $1$
2.6647.6t3.a.a$2$ $ 17^{2} \cdot 23 $ 6.0.59776471.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.23.3t2.b.a$2$ $ 23 $ 3.1.23.1 $S_3$ (as 3T2) $1$ $0$
3.325703.4t5.a.a$3$ $ 7^{2} \cdot 17^{2} \cdot 23 $ 4.2.325703.1 $S_4$ (as 4T5) $1$ $1$
* 3.19159.6t11.a.a$3$ $ 7^{2} \cdot 17 \cdot 23 $ 6.2.440657.1 $S_4\times C_2$ (as 6T11) $1$ $1$
3.440657.6t11.a.a$3$ $ 7^{2} \cdot 17 \cdot 23^{2}$ 6.2.440657.1 $S_4\times C_2$ (as 6T11) $1$ $-1$
3.7491169.6t8.a.a$3$ $ 7^{2} \cdot 17^{2} \cdot 23^{2}$ 4.2.325703.1 $S_4$ (as 4T5) $1$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.