magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![154, -18, 30, -20, 0, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 - 20*x^3 + 30*x^2 - 18*x + 154)
gp: K = bnfinit(x^6 - 3*x^5 - 20*x^3 + 30*x^2 - 18*x + 154, 1)
Normalized defining polynomial
\( x^{6} - 3 x^{5} - 20 x^{3} + 30 x^{2} - 18 x + 154 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(328050000=2^{4}\cdot 3^{8}\cdot 5^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{9}$, $\frac{1}{9} a^{4} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{5} + \frac{1}{27} a^{4} + \frac{1}{27} a^{3} + \frac{2}{27} a^{2} + \frac{11}{27} a + \frac{2}{27}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
$C_{6}$, which has order $6$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{27} a^{5} - \frac{2}{27} a^{4} + \frac{1}{27} a^{3} - \frac{25}{27} a^{2} - \frac{13}{27} a - \frac{61}{27} \), \( \frac{1}{27} a^{5} - \frac{2}{27} a^{4} - \frac{5}{27} a^{3} - \frac{16}{27} a^{2} + \frac{14}{27} a - \frac{1}{27} \), \( \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - a - \frac{29}{9} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62.0642135622 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $\PGL(2,5)$ |
| Character table for $\PGL(2,5)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 5.1.162000.2 $\times$ \(\Q\) |
| Degree 5 sibling: | 5.1.162000.2 |
| Degree 10 siblings: | 10.2.10628820000000.3, 10.2.131220000000.1 |
| Degree 12 sibling: | Deg 12 |
| Degree 15 sibling: | Deg 15 |
| Degree 20 siblings: | Deg 20, Deg 20, Deg 20 |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.6.8.4 | $x^{6} + 18 x^{2} + 63$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 4.2e4_3e4_5e3.10t12.2c1 | $4$ | $ 2^{4} \cdot 3^{4} \cdot 5^{3}$ | $x^{6} - 3 x^{5} - 20 x^{3} + 30 x^{2} - 18 x + 154$ | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ | |
| 4.2e4_3e4_5e3.5t5.2c1 | $4$ | $ 2^{4} \cdot 3^{4} \cdot 5^{3}$ | $x^{6} - 3 x^{5} - 20 x^{3} + 30 x^{2} - 18 x + 154$ | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ | |
| 5.2e4_3e8_5e4.10t13.2c1 | $5$ | $ 2^{4} \cdot 3^{8} \cdot 5^{4}$ | $x^{6} - 3 x^{5} - 20 x^{3} + 30 x^{2} - 18 x + 154$ | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ | |
| * | 5.2e4_3e8_5e5.6t14.5c1 | $5$ | $ 2^{4} \cdot 3^{8} \cdot 5^{5}$ | $x^{6} - 3 x^{5} - 20 x^{3} + 30 x^{2} - 18 x + 154$ | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ |
| 6.2e4_3e8_5e5.20t35.2c1 | $6$ | $ 2^{4} \cdot 3^{8} \cdot 5^{5}$ | $x^{6} - 3 x^{5} - 20 x^{3} + 30 x^{2} - 18 x + 154$ | $\PGL(2,5)$ (as 6T14) | $1$ | $-2$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.