Normalized defining polynomial
\( x^{6} + 6 x^{4} - 11 x^{3} + 9 x^{2} - 33 x + 8 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31723605=3^{2}\cdot 5\cdot 89^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{30} a^{5} - \frac{1}{10} a^{4} - \frac{1}{6} a^{3} - \frac{1}{5} a^{2} - \frac{13}{30} a - \frac{7}{15}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{10} a^{5} + \frac{1}{30} a^{4} + \frac{1}{6} a^{3} - \frac{14}{15} a^{2} + \frac{1}{30} a - \frac{1}{15} \), \( \frac{2}{15} a^{5} - \frac{1}{15} a^{4} - \frac{32}{15} a^{2} - \frac{7}{5} a + \frac{7}{15} \), \( \frac{4}{15} a^{5} - \frac{7}{15} a^{4} + \frac{4}{3} a^{3} - \frac{29}{15} a^{2} + \frac{28}{15} a - \frac{7}{5} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77.0708008118 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 6T13):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3^2:D_4$ |
| Character table for $C_3^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{89}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 6.2.100125.1 |
| Degree 6 sibling: | 6.2.100125.1 |
| Degree 9 sibling: | 9.1.7137811125.1 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 18 siblings: | Deg 18, Deg 18, Deg 18 |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $89$ | 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.5_89.2t1.1c1 | $1$ | $ 5 \cdot 89 $ | $x^{2} - x - 111$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.89.2t1.1c1 | $1$ | $ 89 $ | $x^{2} - x - 22$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.3e2_5_89.4t3.1c1 | $2$ | $ 3^{2} \cdot 5 \cdot 89 $ | $x^{4} - x^{3} + 14 x^{2} - 5 x + 55$ | $D_{4}$ (as 4T3) | $1$ | $-2$ | |
| 4.3e2_5e3_89e2.12t36.1c1 | $4$ | $ 3^{2} \cdot 5^{3} \cdot 89^{2}$ | $x^{6} + 6 x^{4} - 11 x^{3} + 9 x^{2} - 33 x + 8$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| * | 4.3e2_5_89e2.6t13.2c1 | $4$ | $ 3^{2} \cdot 5 \cdot 89^{2}$ | $x^{6} + 6 x^{4} - 11 x^{3} + 9 x^{2} - 33 x + 8$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |
| 4.3e2_5e2_89.6t13.2c1 | $4$ | $ 3^{2} \cdot 5^{2} \cdot 89 $ | $x^{6} + 6 x^{4} - 11 x^{3} + 9 x^{2} - 33 x + 8$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| 4.3e2_5e2_89e3.12t34.2c1 | $4$ | $ 3^{2} \cdot 5^{2} \cdot 89^{3}$ | $x^{6} + 6 x^{4} - 11 x^{3} + 9 x^{2} - 33 x + 8$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |