Properties

Label 6.2.27931544.1
Degree $6$
Signature $[2, 2]$
Discriminant $2^{3}\cdot 17\cdot 59^{3}$
Root discriminant $17.42$
Ramified primes $2, 17, 59$
Class number $2$
Class group $[2]$
Galois group $S_4\times C_2$ (as 6T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-61, -114, 44, 26, -12, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 12*x^4 + 26*x^3 + 44*x^2 - 114*x - 61)
 
gp: K = bnfinit(x^6 - 2*x^5 - 12*x^4 + 26*x^3 + 44*x^2 - 114*x - 61, 1)
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} - 12 x^{4} + 26 x^{3} + 44 x^{2} - 114 x - 61 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(27931544=2^{3}\cdot 17\cdot 59^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 59$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1466} a^{5} - \frac{47}{1466} a^{4} - \frac{48}{733} a^{3} + \frac{681}{1466} a^{2} + \frac{185}{1466} a - \frac{188}{733}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{33}{1466} a^{5} - \frac{85}{1466} a^{4} - \frac{118}{733} a^{3} + \frac{483}{1466} a^{2} + \frac{241}{1466} a - \frac{340}{733} \),  \( \frac{23}{733} a^{5} + \frac{37}{1466} a^{4} - \frac{751}{1466} a^{3} - \frac{463}{733} a^{2} + \frac{3379}{1466} a + \frac{5427}{1466} \),  \( \frac{76}{733} a^{5} + \frac{93}{733} a^{4} - \frac{699}{733} a^{3} - \frac{287}{733} a^{2} + \frac{3065}{733} a + \frac{1477}{733} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24.792940531 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_4$ (as 6T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $S_4\times C_2$
Character table for $S_4\times C_2$

Intermediate fields

3.1.59.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 4.2.1091264.5 $\times$ \(\Q(\sqrt{-34}) \)
Degree 6 sibling: 6.0.473416.1
Degree 8 siblings: 8.4.4145373626699776.4, 8.0.1190857117696.18
Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12
Degree 16 sibling: Deg 16
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ R ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.4$x^{2} + 10$$2$$1$$3$$C_2$$[3]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
$17$17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
$59$59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.2e3_17.2t1.2c1$1$ $ 2^{3} \cdot 17 $ $x^{2} + 34$ $C_2$ (as 2T1) $1$ $-1$
1.59.2t1.1c1$1$ $ 59 $ $x^{2} - x + 15$ $C_2$ (as 2T1) $1$ $-1$
1.2e3_17_59.2t1.1c1$1$ $ 2^{3} \cdot 17 \cdot 59 $ $x^{2} - 2006$ $C_2$ (as 2T1) $1$ $1$
2.2e6_17e2_59.6t3.3c1$2$ $ 2^{6} \cdot 17^{2} \cdot 59 $ $x^{6} + 106 x^{4} - 2 x^{3} + 3472 x^{2} + 200 x + 34817$ $D_{6}$ (as 6T3) $1$ $0$
* 2.59.3t2.1c1$2$ $ 59 $ $x^{3} + 2 x - 1$ $S_3$ (as 3T2) $1$ $0$
3.2e6_17e2_59.4t5.3c1$3$ $ 2^{6} \cdot 17^{2} \cdot 59 $ $x^{4} - 2 x^{3} + 11 x^{2} + 24 x + 8$ $S_4$ (as 4T5) $1$ $1$
* 3.2e3_17_59e2.6t11.1c1$3$ $ 2^{3} \cdot 17 \cdot 59^{2}$ $x^{6} - 2 x^{5} - 12 x^{4} + 26 x^{3} + 44 x^{2} - 114 x - 61$ $S_4\times C_2$ (as 6T11) $1$ $1$
3.2e3_17_59.6t11.1c1$3$ $ 2^{3} \cdot 17 \cdot 59 $ $x^{6} - 2 x^{5} - 12 x^{4} + 26 x^{3} + 44 x^{2} - 114 x - 61$ $S_4\times C_2$ (as 6T11) $1$ $-1$
3.2e6_17e2_59e2.6t8.3c1$3$ $ 2^{6} \cdot 17^{2} \cdot 59^{2}$ $x^{4} - 2 x^{3} + 11 x^{2} + 24 x + 8$ $S_4$ (as 4T5) $1$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.