Normalized defining polynomial
\( x^{6} - 3 x^{5} - 11 x^{4} + 5 x^{3} + 72 x^{2} - 378 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2451110928=2^{4}\cdot 3\cdot 7^{3}\cdot 53^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3699} a^{5} - \frac{18}{137} a^{4} + \frac{1690}{3699} a^{3} + \frac{1214}{3699} a^{2} - \frac{616}{1233} a + \frac{125}{411}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{194}{1233} a^{5} + \frac{82}{411} a^{4} - \frac{118}{1233} a^{3} - \frac{2864}{1233} a^{2} + \frac{78}{137} a + \frac{2467}{137} \), \( \frac{3478}{3699} a^{5} - \frac{2177}{411} a^{4} + \frac{7507}{3699} a^{3} + \frac{7898}{3699} a^{2} + \frac{81062}{1233} a - \frac{68725}{411} \), \( \frac{21}{137} a^{5} + \frac{344}{411} a^{4} - \frac{130}{137} a^{3} - \frac{1060}{411} a^{2} - \frac{1481}{411} a + \frac{4993}{137} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1038.52486022 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.1.1484.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.2.13356.1 $\times$ \(\Q(\sqrt{-3}) \) |
| Degree 6 sibling: | 6.0.6606768.1 |
| Degree 8 siblings: | 8.0.178382736.1, 8.4.24552778165776.4 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.7_53.2t1.1c1 | $1$ | $ 7 \cdot 53 $ | $x^{2} - x + 93$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3_7_53.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 53 $ | $x^{2} - x - 278$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.2e2_3e2_7_53.6t3.2c1 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 7 \cdot 53 $ | $x^{6} - 8 x^{4} - 24 x^{3} + 64 x^{2} + 96 x + 144$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 2.2e2_7_53.3t2.1c1 | $2$ | $ 2^{2} \cdot 7 \cdot 53 $ | $x^{3} + 8 x - 12$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.2e2_3e2_7_53.4t5.1c1 | $3$ | $ 2^{2} \cdot 3^{2} \cdot 7 \cdot 53 $ | $x^{4} - x^{3} - 7 x^{2} + 7 x - 2$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| * | 3.2e2_3_7e2_53e2.6t11.1c1 | $3$ | $ 2^{2} \cdot 3 \cdot 7^{2} \cdot 53^{2}$ | $x^{6} - 3 x^{5} - 11 x^{4} + 5 x^{3} + 72 x^{2} - 378$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ |
| 3.2e2_3_7_53.6t11.1c1 | $3$ | $ 2^{2} \cdot 3 \cdot 7 \cdot 53 $ | $x^{6} - 3 x^{5} - 11 x^{4} + 5 x^{3} + 72 x^{2} - 378$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| 3.2e2_3e2_7e2_53e2.6t8.1c1 | $3$ | $ 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 53^{2}$ | $x^{4} - x^{3} - 7 x^{2} + 7 x - 2$ | $S_4$ (as 4T5) | $1$ | $-1$ |