Normalized defining polynomial
\( x^{6} - 3 x^{5} + 28 x^{4} - 51 x^{3} + 737 x^{2} - 712 x + 16 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23767139536=2^{4}\cdot 7^{3}\cdot 163^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{496} a^{4} - \frac{1}{248} a^{3} - \frac{97}{248} a^{2} + \frac{195}{496} a - \frac{9}{124}$, $\frac{1}{1488} a^{5} - \frac{1}{1488} a^{4} - \frac{49}{372} a^{3} + \frac{1}{1488} a^{2} + \frac{655}{1488} a + \frac{115}{372}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{21}{124} a^{5} - \frac{111}{248} a^{4} + \frac{541}{124} a^{3} - \frac{425}{62} a^{2} + \frac{30919}{248} a - \frac{7383}{62} \), \( \frac{7}{744} a^{5} + \frac{13}{1488} a^{4} + \frac{89}{744} a^{3} - \frac{95}{186} a^{2} + \frac{1043}{1488} a - \frac{121}{372} \), \( \frac{7}{744} a^{5} - \frac{83}{1488} a^{4} + \frac{185}{744} a^{3} + \frac{1}{186} a^{2} + \frac{179}{1488} a - \frac{1}{372} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1032.23021179 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.1.4564.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.2.4564.1 $\times$ \(\Q(\sqrt{-1}) \) |
| Degree 6 sibling: | 6.0.83320384.1 |
| Degree 8 siblings: | 8.0.333281536.2, 8.4.27118306210576.2 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2_7_163.2t1.1c1 | $1$ | $ 2^{2} \cdot 7 \cdot 163 $ | $x^{2} + 1141$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.7_163.2t1.1c1 | $1$ | $ 7 \cdot 163 $ | $x^{2} - x - 285$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.2e2_7_163.6t3.3c1 | $2$ | $ 2^{2} \cdot 7 \cdot 163 $ | $x^{6} - 9 x^{4} - 10 x^{3} + 91 x^{2} + 290 x + 314$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 2.2e2_7_163.3t2.1c1 | $2$ | $ 2^{2} \cdot 7 \cdot 163 $ | $x^{3} + x - 26$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.2e2_7_163.4t5.1c1 | $3$ | $ 2^{2} \cdot 7 \cdot 163 $ | $x^{4} - x^{3} - 5 x + 1$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| * | 3.2e2_7e2_163e2.6t11.2c1 | $3$ | $ 2^{2} \cdot 7^{2} \cdot 163^{2}$ | $x^{6} - 3 x^{5} + 28 x^{4} - 51 x^{3} + 737 x^{2} - 712 x + 16$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ |
| 3.2e4_7_163.6t11.2c1 | $3$ | $ 2^{4} \cdot 7 \cdot 163 $ | $x^{6} - 3 x^{5} + 28 x^{4} - 51 x^{3} + 737 x^{2} - 712 x + 16$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| 3.2e4_7e2_163e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 7^{2} \cdot 163^{2}$ | $x^{4} - x^{3} - 5 x + 1$ | $S_4$ (as 4T5) | $1$ | $-1$ |