Normalized defining polynomial
\( x^{6} - 32 x^{4} - 84 x^{3} + 256 x^{2} + 1344 x - 2688 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22059998352=2^{4}\cdot 3^{3}\cdot 7^{3}\cdot 53^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{4} a^{3}$, $\frac{1}{8} a^{4} - \frac{1}{2} a$, $\frac{1}{1504} a^{5} + \frac{1}{94} a^{4} - \frac{19}{188} a^{3} - \frac{65}{376} a^{2} + \frac{19}{47} a + \frac{17}{47}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{105}{1504} a^{5} - \frac{18}{47} a^{4} - \frac{64}{47} a^{3} + \frac{2951}{376} a^{2} - \frac{261}{47} a - \frac{283}{47} \), \( \frac{211}{1504} a^{5} - \frac{237}{376} a^{4} - \frac{74}{47} a^{3} - \frac{2059}{376} a^{2} + \frac{5809}{94} a - \frac{4027}{47} \), \( \frac{1137}{1504} a^{5} + \frac{197}{94} a^{4} - \frac{1895}{94} a^{3} - \frac{43825}{376} a^{2} - \frac{3636}{47} a + \frac{36625}{47} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2004.63534546 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{1113}) \), 3.1.1484.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.1.1484.1 $\times$ \(\Q(\sqrt{-3}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.0.59460912.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.7_53.2t1.1c1 | $1$ | $ 7 \cdot 53 $ | $x^{2} - x + 93$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3_7_53.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 53 $ | $x^{2} - x - 278$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.2e2_7_53.3t2.1c1 | $2$ | $ 2^{2} \cdot 7 \cdot 53 $ | $x^{3} + 8 x - 12$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.2e2_3e2_7_53.6t3.1c1 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 7 \cdot 53 $ | $x^{6} - 32 x^{4} - 84 x^{3} + 256 x^{2} + 1344 x - 2688$ | $D_{6}$ (as 6T3) | $1$ | $0$ |