Properties

Label 6.2.1971216.1
Degree $6$
Signature $[2, 2]$
Discriminant $2^{4}\cdot 3^{6}\cdot 13^{2}$
Root discriminant $11.20$
Ramified primes $2, 3, 13$
Class number $1$
Class group Trivial
Galois Group $A_6$ (as 6T15)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 0, 0, 3, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 3*x^4 - 2)
gp: K = bnfinit(x^6 - 3*x^5 + 3*x^4 - 2, 1)

Normalized defining polynomial

\(x^{6} \) \(\mathstrut -\mathstrut 3 x^{5} \) \(\mathstrut +\mathstrut 3 x^{4} \) \(\mathstrut -\mathstrut 2 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $6$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[2, 2]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(1971216=2^{4}\cdot 3^{6}\cdot 13^{2}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $11.20$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $3$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a^{5} - 2 a^{4} + a^{3} + a^{2} + a + 1 \),  \( a^{3} - a^{2} - 1 \),  \( a^{4} - 2 a^{3} + a^{2} + a - 1 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 13.6737422635 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$A_6$ (as 6T15):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 360
The 7 conjugacy class representatives for $A_6$
Character table for $A_6$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling algebras

Twin sextic algebra: 6.2.7884864.1
Degree 6 sibling: 6.2.7884864.1
Degree 10 sibling: 10.2.15542770074624.1
Degree 15 siblings: Deg 15, 15.3.30638157055420022784.1
Degree 20 sibling: 20.4.241577701592627342528741376.1
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 sibling: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.5$x^{4} + 2 x + 2$$4$$1$$4$$S_4$$[4/3, 4/3]_{3}^{2}$
$3$3.6.6.1$x^{6} + 3 x^{5} - 2$$3$$2$$6$$C_3^2:C_4$$[3/2, 3/2]_{2}^{2}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
5.2e6_3e6_13e2.6t15.2c1$5$ $ 2^{6} \cdot 3^{6} \cdot 13^{2}$ $x^{6} - 3 x^{5} + 3 x^{4} - 2$ $A_6$ (as 6T15) $1$ $1$
* 5.2e4_3e6_13e2.6t15.2c1$5$ $ 2^{4} \cdot 3^{6} \cdot 13^{2}$ $x^{6} - 3 x^{5} + 3 x^{4} - 2$ $A_6$ (as 6T15) $1$ $1$
8.2e10_3e12_13e4.36t555.2c1$8$ $ 2^{10} \cdot 3^{12} \cdot 13^{4}$ $x^{6} - 3 x^{5} + 3 x^{4} - 2$ $A_6$ (as 6T15) $1$ $0$
8.2e10_3e12_13e4.36t555.2c2$8$ $ 2^{10} \cdot 3^{12} \cdot 13^{4}$ $x^{6} - 3 x^{5} + 3 x^{4} - 2$ $A_6$ (as 6T15) $1$ $0$
9.2e10_3e12_13e4.10t26.2c1$9$ $ 2^{10} \cdot 3^{12} \cdot 13^{4}$ $x^{6} - 3 x^{5} + 3 x^{4} - 2$ $A_6$ (as 6T15) $1$ $1$
10.2e12_3e14_13e6.30t88.2c1$10$ $ 2^{12} \cdot 3^{14} \cdot 13^{6}$ $x^{6} - 3 x^{5} + 3 x^{4} - 2$ $A_6$ (as 6T15) $1$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.