Normalized defining polynomial
\( x^{6} - 3x^{4} - 28x^{3} + 108x^{2} - 126x - 99 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1906108281\) \(\medspace = 3^{8}\cdot 7^{4}\cdot 11^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(35.21\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{4/3}7^{2/3}11^{1/2}\approx 52.51177625135337$ | ||
Ramified primes: | \(3\), \(7\), \(11\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2310}a^{5}-\frac{79}{770}a^{4}-\frac{13}{70}a^{3}-\frac{115}{231}a^{2}+\frac{13}{385}a+\frac{31}{70}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{12}$, which has order $12$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2}{231}a^{5}-\frac{4}{77}a^{4}-\frac{3}{14}a^{3}-\frac{211}{462}a^{2}+\frac{206}{77}a+\frac{5}{14}$, $\frac{5}{462}a^{5}-\frac{5}{77}a^{4}-\frac{1}{7}a^{3}-\frac{103}{231}a^{2}+\frac{361}{154}a-\frac{83}{14}$, $\frac{101}{2310}a^{5}+\frac{53}{385}a^{4}+\frac{17}{70}a^{3}-\frac{361}{462}a^{2}+\frac{1471}{770}a+\frac{43}{35}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 64.9177372786 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 64.9177372786 \cdot 12}{2\cdot\sqrt{1906108281}}\cr\approx \mathstrut & 1.40883641433 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 4 conjugacy class representatives for $A_4$ |
Character table for $A_4$ |
Intermediate fields
3.3.3969.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | deg 12 |
Twin sextic algebra: | \(\Q\) $\times$ \(\Q\) $\times$ 4.0.480249.1 |
Degree 4 sibling: | 4.0.480249.1 |
Minimal sibling: | 4.0.480249.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
\(7\) | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
\(11\) | $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
11.2.1.2 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |