Normalized defining polynomial
\( x^{6} - 2x^{5} + 4x^{4} - 28x^{3} + 76x^{2} - 70x + 13 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[2, 2]$ |
| |
| Discriminant: |
\(180713410816\)
\(\medspace = 2^{8}\cdot 163^{4}\)
|
| |
| Root discriminant: | \(75.19\) |
| |
| Galois root discriminant: | $2^{2}163^{2/3}\approx 119.35805347734977$ | ||
| Ramified primes: |
\(2\), \(163\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ |
| |
| Narrow class group: | $C_{3}$, which has order $3$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{2}a^{5}+\frac{3}{2}a^{3}-\frac{23}{2}a^{2}+13a-\frac{5}{2}$, $a^{5}-\frac{1}{2}a^{4}+\frac{7}{2}a^{3}-25a^{2}+\frac{89}{2}a-\frac{19}{2}$, $128331a^{5}+4497941a^{4}-25036631a^{3}+49670441a^{2}-38442703a+6958606$
|
| |
| Regulator: | \( 1679.8616776 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 1679.8616776 \cdot 3}{2\cdot\sqrt{180713410816}}\cr\approx \mathstrut & 0.93602903044 \end{aligned}\]
Galois group
| A non-solvable group of order 360 |
| The 7 conjugacy class representatives for $A_6$ |
| Character table for $A_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 6.2.6801664.2 |
| Degree 6 sibling: | 6.2.6801664.2 |
| Degree 10 sibling: | deg 10 |
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 20 sibling: | deg 20 |
| Degree 30 siblings: | deg 30, deg 30 |
| Degree 36 sibling: | deg 36 |
| Degree 40 sibling: | deg 40 |
| Degree 45 sibling: | deg 45 |
| Minimal sibling: | 6.2.6801664.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.2.2.6a1.3 | $x^{4} + 6 x^{3} + 7 x^{2} + 6 x + 3$ | $2$ | $2$ | $6$ | $D_{4}$ | $$[2, 3]^{2}$$ | |
|
\(163\)
| 163.1.3.2a1.2 | $x^{3} + 326$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 163.1.3.2a1.3 | $x^{3} + 652$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |