Normalized defining polynomial
\( x^{6} - x^{5} + 7 x^{4} + 91 x^{3} - 370 x^{2} + 1312 x - 1962 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16189331472=2^{4}\cdot 3^{2}\cdot 17^{2}\cdot 73^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{4} - \frac{2}{9} a^{2} + \frac{4}{27} a + \frac{1}{3}$, $\frac{1}{1107} a^{5} - \frac{8}{1107} a^{4} - \frac{20}{369} a^{3} + \frac{511}{1107} a^{2} + \frac{112}{1107} a + \frac{4}{123}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{584}{1107} a^{5} + \frac{412}{1107} a^{4} + \frac{1850}{369} a^{3} + \frac{65708}{1107} a^{2} - \frac{103922}{1107} a + \frac{70027}{123} \), \( \frac{76}{369} a^{5} - \frac{512}{1107} a^{4} - \frac{167}{123} a^{3} + \frac{5216}{369} a^{2} - \frac{107591}{1107} a + \frac{18091}{123} \), \( \frac{250}{27} a^{4} - \frac{500}{9} a^{2} + \frac{14500}{27} a - \frac{9329}{3} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2239.61705252 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 3.1.3723.1 $\times$ 3.1.204.1 |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 73 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.73.2t1.1c1 | $1$ | $ 73 $ | $x^{2} - x - 18$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3_17.2t1.1c1 | $1$ | $ 3 \cdot 17 $ | $x^{2} - x + 13$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3_17_73.2t1.1c1 | $1$ | $ 3 \cdot 17 \cdot 73 $ | $x^{2} - x + 931$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3_17_73.6t3.5c1 | $2$ | $ 3 \cdot 17 \cdot 73 $ | $x^{6} - x^{5} + 10 x^{4} + 15 x^{3} + 21 x^{2} + 18 x + 36$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.3_17_73.3t2.1c1 | $2$ | $ 3 \cdot 17 \cdot 73 $ | $x^{3} - x^{2} + x - 12$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2e2_3_17.3t2.1c1 | $2$ | $ 2^{2} \cdot 3 \cdot 17 $ | $x^{3} - x^{2} + x - 3$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2e2_3_17_73e2.6t3.2c1 | $2$ | $ 2^{2} \cdot 3 \cdot 17 \cdot 73^{2}$ | $x^{6} - x^{5} - 53 x^{4} + 41 x^{3} + 988 x^{2} - 28 x - 6546$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 4.2e4_3e2_17e2_73e2.6t9.1c1 | $4$ | $ 2^{4} \cdot 3^{2} \cdot 17^{2} \cdot 73^{2}$ | $x^{6} - x^{5} + 7 x^{4} + 91 x^{3} - 370 x^{2} + 1312 x - 1962$ | $S_3^2$ (as 6T9) | $1$ | $0$ |