Normalized defining polynomial
\( x^{6} - x^{5} + 4x + 1 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 2]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(153125\) \(\medspace = 5^{5}\cdot 7^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(7.31\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{5/6}7^{1/2}\approx 10.116354127720633$ | ||
Ramified primes: | \(5\), \(7\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{2}{3}a^{2}+\frac{2}{3}$, $\frac{1}{3}a^{4}-\frac{2}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{2}{3}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1.56253260729 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 1.56253260729 \cdot 1}{2\cdot\sqrt{153125}}\cr\approx \mathstrut & 0.315279527210 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_{6}$ |
Character table for $D_{6}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.1.175.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | 12.0.1148916015625.1 |
Twin sextic algebra: | 3.1.175.1 $\times$ \(\Q(\sqrt{-35}) \) $\times$ \(\Q\) |
Degree 6 sibling: | 6.0.1071875.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }$ | ${\href{/padicField/3.2.0.1}{2} }^{3}$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.6.5.1 | $x^{6} + 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
\(7\) | 7.2.0.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.35.2t1.a.a | $1$ | $ 5 \cdot 7 $ | \(\Q(\sqrt{-35}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.175.3t2.b.a | $2$ | $ 5^{2} \cdot 7 $ | 3.1.175.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.175.6t3.a.a | $2$ | $ 5^{2} \cdot 7 $ | 6.2.153125.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |