Normalized defining polynomial
\( x^{6} - 9x^{4} - 2x^{3} + 21x^{2} - 12 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[2, 2]$ |
| |
| Discriminant: |
\(151585344\)
\(\medspace = 2^{6}\cdot 3^{8}\cdot 19^{2}\)
|
| |
| Root discriminant: | \(23.09\) |
| |
| Galois root discriminant: | $2^{3/2}3^{4/3}19^{1/2}\approx 53.34374068187387$ | ||
| Ramified primes: |
\(2\), \(3\), \(19\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ |
| |
| Narrow class group: | $C_{3}$, which has order $3$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a-1$, $\frac{1}{2}a^{5}-\frac{9}{2}a^{3}+\frac{17}{2}a-4$, $\frac{1}{2}a^{5}-2a^{4}-\frac{5}{2}a^{3}+13a^{2}-\frac{1}{2}a-10$
|
| |
| Regulator: | \( 83.9679707741 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 83.9679707741 \cdot 3}{2\cdot\sqrt{151585344}}\cr\approx \mathstrut & 1.61545936433 \end{aligned}\]
Galois group
| A non-solvable group of order 360 |
| The 7 conjugacy class representatives for $A_6$ |
| Character table for $A_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 6.2.1871424.2 |
| Degree 6 sibling: | 6.2.1871424.2 |
| Degree 10 sibling: | deg 10 |
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 20 sibling: | deg 20 |
| Degree 30 siblings: | deg 30, deg 30 |
| Degree 36 sibling: | deg 36 |
| Degree 40 sibling: | deg 40 |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | 6.2.1871424.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{3}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | R | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.2.2.4a2.2 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
|
\(3\)
| 3.1.3.4a2.2 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ |
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
|
\(19\)
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 19.2.2.2a1.1 | $x^{4} + 36 x^{3} + 328 x^{2} + 91 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |