Normalized defining polynomial
\( x^{6} - 3 x^{5} + 24 x^{4} + 42 x^{3} - 447 x^{2} + 873 x - 1002 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(150006330000=2^{4}\cdot 3^{7}\cdot 5^{4}\cdot 19^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{3} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{4} + \frac{3}{64} a^{3} - \frac{3}{64} a^{2} + \frac{17}{64} a - \frac{9}{32}$, $\frac{1}{128} a^{5} + \frac{1}{32} a^{3} + \frac{13}{64} a^{2} - \frac{53}{128} a + \frac{11}{64}$
Class group and class number
$C_{3}\times C_{15}$, which has order $45$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{64} a^{5} + \frac{5}{16} a^{3} + \frac{61}{32} a^{2} - \frac{261}{64} a - \frac{293}{32} \), \( \frac{1}{128} a^{5} - \frac{1}{64} a^{4} + \frac{7}{64} a^{3} + \frac{3}{4} a^{2} - \frac{583}{128} a + \frac{301}{64} \), \( \frac{13}{128} a^{5} - \frac{23}{64} a^{4} + \frac{141}{64} a^{3} + \frac{103}{32} a^{2} - \frac{6991}{128} a + \frac{4637}{64} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 693.54289438 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{57}) \), 3.1.51300.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-1}) \) $\times$ 3.1.51300.1 |
| Degree 6 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.6.7.2 | $x^{6} + 3 x^{2} + 6$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2_3_19.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 \cdot 19 $ | $x^{2} + 57$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3_19.2t1.1c1 | $1$ | $ 3 \cdot 19 $ | $x^{2} - x - 14$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 2.2e2_3e3_5e2_19.3t2.1c1 | $2$ | $ 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 19 $ | $x^{3} + 45 x - 130$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.2e2_3e3_5e2_19.6t3.4c1 | $2$ | $ 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 19 $ | $x^{6} - 3 x^{5} + 24 x^{4} + 42 x^{3} - 447 x^{2} + 873 x - 1002$ | $D_{6}$ (as 6T3) | $1$ | $0$ |