magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, 6, -12, 4, -3, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 - 3*x^4 + 4*x^3 - 12*x^2 + 6*x - 5)
gp: K = bnfinit(x^6 - 3*x^5 - 3*x^4 + 4*x^3 - 12*x^2 + 6*x - 5, 1)
Normalized defining polynomial
\( x^{6} - 3 x^{5} - 3 x^{4} + 4 x^{3} - 12 x^{2} + 6 x - 5 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15000633=3^{7}\cdot 19^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( 3 a^{5} - 7 a^{4} - 16 a^{3} + 7 a^{2} - 19 a + 1 \), \( a^{4} - 2 a^{3} - 6 a^{2} - 6 \), \( a^{4} - 2 a^{3} - 7 a^{2} + 4 a - 7 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48.9955672887 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $\PGL(2,5)$ |
| Character table for $\PGL(2,5)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 5.1.185193.1 $\times$ \(\Q\) |
| Degree 5 sibling: | 5.1.185193.1 |
| Degree 10 siblings: | 10.2.17594077438737.1, 10.2.17594077438737.2 |
| Degree 12 sibling: | Deg 12 |
| Degree 15 sibling: | Deg 15 |
| Degree 20 siblings: | Deg 20, Deg 20, Deg 20 |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.2 | $x^{6} + 3 x^{2} + 6$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_19.2t1.1c1 | $1$ | $ 3 \cdot 19 $ | $x^{2} - x - 14$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 4.3e5_19e3.10t12.2c1 | $4$ | $ 3^{5} \cdot 19^{3}$ | $x^{6} - 3 x^{5} - 3 x^{4} + 4 x^{3} - 12 x^{2} + 6 x - 5$ | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ | |
| 4.3e3_19e3.5t5.2c1 | $4$ | $ 3^{3} \cdot 19^{3}$ | $x^{6} - 3 x^{5} - 3 x^{4} + 4 x^{3} - 12 x^{2} + 6 x - 5$ | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ | |
| 5.3e6_19e4.10t13.2c1 | $5$ | $ 3^{6} \cdot 19^{4}$ | $x^{6} - 3 x^{5} - 3 x^{4} + 4 x^{3} - 12 x^{2} + 6 x - 5$ | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ | |
| * | 5.3e7_19e3.6t14.2c1 | $5$ | $ 3^{7} \cdot 19^{3}$ | $x^{6} - 3 x^{5} - 3 x^{4} + 4 x^{3} - 12 x^{2} + 6 x - 5$ | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ |
| 6.3e7_19e5.20t35.2c1 | $6$ | $ 3^{7} \cdot 19^{5}$ | $x^{6} - 3 x^{5} - 3 x^{4} + 4 x^{3} - 12 x^{2} + 6 x - 5$ | $\PGL(2,5)$ (as 6T14) | $1$ | $-2$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.