Normalized defining polynomial
\( x^{6} - 2 x^{5} + 7 x^{4} + 19 x^{3} - 16 x^{2} + 75 x - 459 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14905098181=23^{3}\cdot 107^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11883} a^{5} + \frac{1246}{11883} a^{4} - \frac{1658}{11883} a^{3} - \frac{1523}{11883} a^{2} + \frac{560}{11883} a - \frac{42}{233}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2680.75326861 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{2461}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 3.1.23.1 $\times$ 3.1.107.1 |
| Degree 9 sibling: | 9.1.14905098181.1 |
| Degree 12 sibling: | Deg 12 |
| Degree 18 siblings: | Deg 18, Deg 18, Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 107 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.23_107.2t1.1c1 | $1$ | $ 23 \cdot 107 $ | $x^{2} - x - 615$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.23.2t1.1c1 | $1$ | $ 23 $ | $x^{2} - x + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.107.2t1.1c1 | $1$ | $ 107 $ | $x^{2} - x + 27$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.23e2_107.6t3.1c1 | $2$ | $ 23^{2} \cdot 107 $ | $x^{6} - x^{5} + 23 x^{4} - 13 x^{3} + 109 x^{2} - 67 x + 64$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.107.3t2.1c1 | $2$ | $ 107 $ | $x^{3} - x^{2} + 3 x - 2$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.23.3t2.1c1 | $2$ | $ 23 $ | $x^{3} - x^{2} + 1$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.23_107e2.6t3.1c1 | $2$ | $ 23 \cdot 107^{2}$ | $x^{6} - 2 x^{5} + 55 x^{4} - 295 x^{3} + 970 x^{2} - 6507 x - 433997$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 4.23e2_107e2.6t9.1c1 | $4$ | $ 23^{2} \cdot 107^{2}$ | $x^{6} - 2 x^{5} + 7 x^{4} + 19 x^{3} - 16 x^{2} + 75 x - 459$ | $S_3^2$ (as 6T9) | $1$ | $0$ |