Normalized defining polynomial
\( x^{6} - x^{5} + x^{4} - 4 x^{2} + 35 x - 43 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1301869=23^{3}\cdot 107\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2143} a^{5} + \frac{307}{2143} a^{4} + \frac{265}{2143} a^{3} + \frac{186}{2143} a^{2} - \frac{577}{2143} a + \frac{188}{2143}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{49}{2143} a^{5} + \frac{42}{2143} a^{4} + \frac{127}{2143} a^{3} + \frac{542}{2143} a^{2} - \frac{414}{2143} a + \frac{640}{2143} \), \( \frac{147}{2143} a^{5} + \frac{126}{2143} a^{4} + \frac{381}{2143} a^{3} - \frac{517}{2143} a^{2} - \frac{1242}{2143} a - \frac{223}{2143} \), \( \frac{34}{2143} a^{5} - \frac{277}{2143} a^{4} + \frac{438}{2143} a^{3} - \frac{105}{2143} a^{2} - \frac{331}{2143} a - \frac{37}{2143} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4.11306190762 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.2.263327.1 $\times$ \(\Q(\sqrt{-107}) \) |
| Degree 6 sibling: | 6.0.56603.1 |
| Degree 8 siblings: | 8.4.36681446623441.1, 8.0.69341108929.1 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $107$ | 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.107.2t1.1c1 | $1$ | $ 107 $ | $x^{2} - x + 27$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.23.2t1.1c1 | $1$ | $ 23 $ | $x^{2} - x + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.23_107.2t1.1c1 | $1$ | $ 23 \cdot 107 $ | $x^{2} - x - 615$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.23_107e2.6t3.2c1 | $2$ | $ 23 \cdot 107^{2}$ | $x^{6} - x^{5} + 80 x^{4} - 55 x^{3} + 2161 x^{2} - 568 x + 19657$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 2.23.3t2.1c1 | $2$ | $ 23 $ | $x^{3} - x^{2} + 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.23_107e2.4t5.1c1 | $3$ | $ 23 \cdot 107^{2}$ | $x^{4} - x^{3} + 9 x^{2} + 9 x - 26$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| * | 3.23e2_107.6t11.1c1 | $3$ | $ 23^{2} \cdot 107 $ | $x^{6} - x^{5} + x^{4} - 4 x^{2} + 35 x - 43$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ |
| 3.23_107.6t11.1c1 | $3$ | $ 23 \cdot 107 $ | $x^{6} - x^{5} + x^{4} - 4 x^{2} + 35 x - 43$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| 3.23e2_107e2.6t8.1c1 | $3$ | $ 23^{2} \cdot 107^{2}$ | $x^{4} - x^{3} + 9 x^{2} + 9 x - 26$ | $S_4$ (as 4T5) | $1$ | $-1$ |