Normalized defining polynomial
\( x^{6} - 2 x^{5} - x^{4} - 18 x^{3} - 211 x^{2} - 415 x - 538 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1278983549=29^{3}\cdot 229^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{158033} a^{5} - \frac{34718}{158033} a^{4} - \frac{47604}{158033} a^{3} + \frac{69365}{158033} a^{2} + \frac{1361}{6871} a + \frac{77578}{158033}$
Class group and class number
$C_{8}$, which has order $8$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46.9529526652 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.3.229.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 4.0.229.1 $\times$ \(\Q(\sqrt{6641}) \) |
| Degree 6 sibling: | 6.2.292887232721.1 |
| Degree 8 siblings: | 8.0.1945064112500161.2, 8.0.37090522921.1 |
| Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
| Degree 16 sibling: | Deg 16 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 229 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.29_229.2t1.1c1 | $1$ | $ 29 \cdot 229 $ | $x^{2} - x - 1660$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.229.2t1.1c1 | $1$ | $ 229 $ | $x^{2} - x - 57$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.29.2t1.1c1 | $1$ | $ 29 $ | $x^{2} - x - 7$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.29e2_229.6t3.2c1 | $2$ | $ 29^{2} \cdot 229 $ | $x^{6} - 176 x^{4} - 65 x^{3} + 7744 x^{2} + 5720 x - 80296$ | $D_{6}$ (as 6T3) | $1$ | $2$ | |
| * | 2.229.3t2.1c1 | $2$ | $ 229 $ | $x^{3} - 4 x - 1$ | $S_3$ (as 3T2) | $1$ | $2$ |
| 3.229.4t5.1c1 | $3$ | $ 229 $ | $x^{4} - x + 1$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.29e3_229.6t11.2c1 | $3$ | $ 29^{3} \cdot 229 $ | $x^{6} - 2 x^{5} - x^{4} - 18 x^{3} - 211 x^{2} - 415 x - 538$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ |
| 3.29e3_229e2.6t11.2c1 | $3$ | $ 29^{3} \cdot 229^{2}$ | $x^{6} - 2 x^{5} - x^{4} - 18 x^{3} - 211 x^{2} - 415 x - 538$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| 3.229e2.6t8.1c1 | $3$ | $ 229^{2}$ | $x^{4} - x + 1$ | $S_4$ (as 4T5) | $1$ | $-1$ |