Properties

Label 6.2.12444741136.1
Degree $6$
Signature $[2, 2]$
Discriminant $2^{4}\cdot 167^{4}$
Root discriminant $48.14$
Ramified primes $2, 167$
Class number $2$
Class group $[2]$
Galois group $\PSL(2,5)$ (as 6T12)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 20, 29, 35, 22, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + 22*x^4 + 35*x^3 + 29*x^2 + 20*x + 4)
 
gp: K = bnfinit(x^6 - x^5 + 22*x^4 + 35*x^3 + 29*x^2 + 20*x + 4, 1)
 

Normalized defining polynomial

\( x^{6} - x^{5} + 22 x^{4} + 35 x^{3} + 29 x^{2} + 20 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12444741136=2^{4}\cdot 167^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 167$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{26} a^{5} + \frac{3}{26} a^{4} + \frac{4}{13} a^{3} - \frac{11}{26} a^{2} + \frac{11}{26} a + \frac{6}{13}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{239}{26} a^{5} - \frac{271}{26} a^{4} + \frac{2633}{13} a^{3} + \frac{7719}{26} a^{2} + \frac{5203}{26} a + \frac{1954}{13} \),  \( \frac{647}{13} a^{5} - \frac{867}{13} a^{4} + \frac{14523}{13} a^{3} + \frac{17739}{13} a^{2} + \frac{12564}{13} a + \frac{9051}{13} \),  \( \frac{5249}{26} a^{5} - \frac{6743}{26} a^{4} + \frac{58696}{13} a^{3} + \frac{150339}{26} a^{2} + \frac{109479}{26} a + \frac{36928}{13} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1395.14735379 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_5$ (as 6T12):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 60
The 5 conjugacy class representatives for $\PSL(2,5)$
Character table for $\PSL(2,5)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling algebras

Twin sextic algebra: \(\Q\) $\times$ 5.1.446224.1
Degree 5 sibling: data not computed
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 sibling: data not computed
Degree 30 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
$167$167.3.2.1$x^{3} - 167$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
167.3.2.1$x^{3} - 167$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$