Normalized defining polynomial
\( x^{6} - 2 x^{5} - 28 x^{4} + 36 x^{3} + 294 x^{2} - 250 x - 854 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112698432=2^{6}\cdot 3^{3}\cdot 7^{2}\cdot 11^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{221} a^{5} - \frac{2}{17} a^{4} - \frac{67}{221} a^{3} + \frac{97}{221} a^{2} - \frac{45}{221} a - \frac{54}{221}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{24}{221} a^{5} + \frac{3}{17} a^{4} - \frac{503}{221} a^{3} - \frac{987}{221} a^{2} + \frac{2898}{221} a + \frac{4671}{221} \), \( \frac{16}{221} a^{5} + \frac{2}{17} a^{4} - \frac{409}{221} a^{3} - \frac{658}{221} a^{2} + \frac{2595}{221} a + \frac{4219}{221} \), \( \frac{14}{221} a^{5} + \frac{6}{17} a^{4} - \frac{54}{221} a^{3} - \frac{1073}{221} a^{2} - \frac{1956}{221} a - \frac{977}{221} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25.5018610066 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 6T11):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| 3.1.44.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q(\sqrt{-3}) \) $\times$ 4.2.8624.1 |
| Degree 6 sibling: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_11.2t1.1c1 | $1$ | $ 3 \cdot 11 $ | $x^{2} - x - 8$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.11.2t1.1c1 | $1$ | $ 11 $ | $x^{2} - x + 3$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e2_3e2_11.6t3.1c1 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 11 $ | $x^{6} - x^{5} - 3 x^{3} + 2 x^{2} + x + 1$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| * | 2.2e2_11.3t2.1c1 | $2$ | $ 2^{2} \cdot 11 $ | $x^{3} - x^{2} + x + 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 3.2e4_7e2_11.4t5.1c1 | $3$ | $ 2^{4} \cdot 7^{2} \cdot 11 $ | $x^{4} - 2 x^{3} + 2 x^{2} + 6 x + 2$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e4_3e3_7e2_11.6t11.1c1 | $3$ | $ 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 11 $ | $x^{6} - 2 x^{5} - 28 x^{4} + 36 x^{3} + 294 x^{2} - 250 x - 854$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| * | 3.2e4_3e3_7e2_11e2.6t11.1c1 | $3$ | $ 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 11^{2}$ | $x^{6} - 2 x^{5} - 28 x^{4} + 36 x^{3} + 294 x^{2} - 250 x - 854$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ |
| 3.2e4_7e2_11e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 7^{2} \cdot 11^{2}$ | $x^{4} - 2 x^{3} + 2 x^{2} + 6 x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ |