Normalized defining polynomial
\( x^{6} - 3x^{5} + 3x^{3} - 2x^{2} + 3x + 9 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[2, 2]$ |
| |
| Discriminant: |
\(1058000\)
\(\medspace = 2^{4}\cdot 5^{3}\cdot 23^{2}\)
|
| |
| Root discriminant: | \(10.09\) |
| |
| Galois root discriminant: | $2^{2/3}5^{1/2}23^{1/2}\approx 17.0229798060099$ | ||
| Ramified primes: |
\(2\), \(5\), \(23\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{27}a^{5}-\frac{1}{3}a^{4}+\frac{1}{9}a^{2}+\frac{7}{27}a-\frac{4}{9}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{4}{27}a^{5}-\frac{1}{3}a^{4}+\frac{4}{9}a^{2}-\frac{26}{27}a-\frac{7}{9}$, $\frac{2}{27}a^{5}-\frac{2}{3}a^{4}+a^{3}+\frac{2}{9}a^{2}-\frac{13}{27}a+\frac{19}{9}$, $\frac{2}{9}a^{5}-a^{4}+a^{3}+\frac{2}{3}a^{2}-\frac{13}{9}a+\frac{4}{3}$
|
| |
| Regulator: | \( 5.9446953245 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{2}\cdot 5.9446953245 \cdot 1}{2\cdot\sqrt{1058000}}\cr\approx \mathstrut & 0.45632735077 \end{aligned}\]
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.460.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 12.0.592143556000000.2 |
| Twin sextic algebra: | 3.1.460.1 $\times$ \(\Q(\sqrt{-23}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.0.4866800.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(23\)
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 23.2.2.2a1.2 | $x^{4} + 42 x^{3} + 451 x^{2} + 210 x + 48$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *12 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.115.2t1.a.a | $1$ | $ 5 \cdot 23 $ | \(\Q(\sqrt{-115}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.23.2t1.a.a | $1$ | $ 23 $ | \(\Q(\sqrt{-23}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *12 | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *12 | 2.460.3t2.a.a | $2$ | $ 2^{2} \cdot 5 \cdot 23 $ | 3.1.460.1 | $S_3$ (as 3T2) | $1$ | $0$ |
| *12 | 2.460.6t3.b.a | $2$ | $ 2^{2} \cdot 5 \cdot 23 $ | 6.2.1058000.3 | $D_{6}$ (as 6T3) | $1$ | $0$ |