magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, 6, -45, 20, -5, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 5*x^4 + 20*x^3 - 45*x^2 + 6*x - 7)
gp: K = bnfinit(x^6 - 2*x^5 - 5*x^4 + 20*x^3 - 45*x^2 + 6*x - 7, 1)
Normalized defining polynomial
\( x^{6} - 2 x^{5} - 5 x^{4} + 20 x^{3} - 45 x^{2} + 6 x - 7 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(100000000=2^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{4} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{8} a^{5} + \frac{3}{8} a - \frac{1}{2}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{9}{8} a^{5} - \frac{13}{8} a^{4} - 7 a^{3} + \frac{39}{2} a^{2} - \frac{297}{8} a - \frac{191}{8} \), \( \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - a^{3} + \frac{5}{2} a^{2} - \frac{57}{8} a - \frac{25}{8} \), \( \frac{3}{4} a^{3} - \frac{1}{4} a^{2} + \frac{3}{4} a + \frac{23}{4} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 342.859495562 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A non-solvable group of order 60 |
| The 5 conjugacy class representatives for $\PSL(2,5)$ |
| Character table for $\PSL(2,5)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 5.1.100000000.1 $\times$ \(\Q\) |
| Degree 5 sibling: | 5.1.100000000.1 |
| Degree 10 sibling: | 10.2.10000000000000000.2 |
| Degree 12 sibling: | 12.0.2560000000000000000.23 |
| Degree 15 sibling: | Deg 15 |
| Degree 20 sibling: | Deg 20 |
| Degree 30 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.5.8.6 | $x^{5} + 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $D_{5}$ | $[2]^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 3.2e8_5e4.12t33.2c1 | $3$ | $ 2^{8} \cdot 5^{4}$ | $x^{6} - 2 x^{5} - 5 x^{4} + 20 x^{3} - 45 x^{2} + 6 x - 7$ | $\PSL(2,5)$ (as 6T12) | $1$ | $-1$ | |
| 3.2e8_5e4.12t33.2c2 | $3$ | $ 2^{8} \cdot 5^{4}$ | $x^{6} - 2 x^{5} - 5 x^{4} + 20 x^{3} - 45 x^{2} + 6 x - 7$ | $\PSL(2,5)$ (as 6T12) | $1$ | $-1$ | |
| 4.2e8_5e8.5t4.2c1 | $4$ | $ 2^{8} \cdot 5^{8}$ | $x^{6} - 2 x^{5} - 5 x^{4} + 20 x^{3} - 45 x^{2} + 6 x - 7$ | $\PSL(2,5)$ (as 6T12) | $1$ | $0$ | |
| * | 5.2e8_5e8.6t12.2c1 | $5$ | $ 2^{8} \cdot 5^{8}$ | $x^{6} - 2 x^{5} - 5 x^{4} + 20 x^{3} - 45 x^{2} + 6 x - 7$ | $\PSL(2,5)$ (as 6T12) | $1$ | $1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.