# Properties

 Label 6.0.8732691.1 Degree $6$ Signature $[0, 3]$ Discriminant $-8732691$ Root discriminant $$14.35$$ Ramified primes $3,11$ Class number $3$ Class group [3] Galois group $C_6$ (as 6T1)

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 6*x^4 - 5*x^3 + 33*x^2 - 54*x + 111)

gp: K = bnfinit(y^6 - 3*y^5 + 6*y^4 - 5*y^3 + 33*y^2 - 54*y + 111, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 - 3*x^5 + 6*x^4 - 5*x^3 + 33*x^2 - 54*x + 111);

oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - 3*x^5 + 6*x^4 - 5*x^3 + 33*x^2 - 54*x + 111)

$$x^{6} - 3x^{5} + 6x^{4} - 5x^{3} + 33x^{2} - 54x + 111$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

oscar: defining_polynomial(K)

## Invariants

 Degree: $6$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K);  oscar: degree(K) Signature: $[0, 3]$ sage: K.signature()  gp: K.sign  magma: Signature(K);  oscar: signature(K) Discriminant: $$-8732691$$ -8732691 $$\medspace = -\,3^{8}\cdot 11^{3}$$ sage: K.disc()  gp: K.disc  magma: OK := Integers(K); Discriminant(OK);  oscar: OK = ring_of_integers(K); discriminant(OK) Root discriminant: $$14.35$$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(OK))^(1/Degree(K));  oscar: (1.0 * dK)^(1/degree(K)) Galois root discriminant: $3^{4/3}11^{1/2}\approx 14.350202036282921$ Ramified primes: $$3$$, $$11$$ 3, 11 sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(OK));  oscar: prime_divisors(discriminant((OK))) Discriminant root field: $$\Q(\sqrt{-11})$$ $\card{ \Gal(K/\Q) }$: $6$ sage: K.automorphisms()  magma: Automorphisms(K);  oscar: automorphisms(K) This field is Galois and abelian over $\Q$. Conductor: $$99=3^{2}\cdot 11$$ Dirichlet character group: $\lbrace$$\chi_{99}(1,·), \chi_{99}(34,·), \chi_{99}(67,·), \chi_{99}(10,·), \chi_{99}(43,·), \chi_{99}(76,·)$$\rbrace$ This is a CM field. Reflex fields: $$\Q(\sqrt{-11})$$, 6.0.8732691.1$^{3}$

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{4481}a^{5}+\frac{1758}{4481}a^{4}-\frac{527}{4481}a^{3}-\frac{485}{4481}a^{2}+\frac{1819}{4481}a-\frac{710}{4481}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

oscar: basis(OK)

 Monogenic: Not computed Index: $1$ Inessential primes: None

## Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

oscar: class_group(K)

## Unit group

sage: UK = K.unit_group()

magma: UK, fUK := UnitGroup(K);

oscar: UK, fUK = unit_group(OK)

 Rank: $2$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K);  oscar: rank(UK) Torsion generator: $$-1$$ -1  (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  oscar: torsion_units_generator(OK) Fundamental units: $\frac{84}{4481}a^{5}-\frac{201}{4481}a^{4}+\frac{542}{4481}a^{3}-\frac{411}{4481}a^{2}+\frac{442}{4481}a-\frac{1387}{4481}$, $\frac{84}{4481}a^{5}-\frac{201}{4481}a^{4}+\frac{542}{4481}a^{3}-\frac{411}{4481}a^{2}+\frac{442}{4481}a+\frac{3094}{4481}$ 84/4481*a^5 - 201/4481*a^4 + 542/4481*a^3 - 411/4481*a^2 + 442/4481*a - 1387/4481, 84/4481*a^5 - 201/4481*a^4 + 542/4481*a^3 - 411/4481*a^2 + 442/4481*a + 3094/4481 sage: UK.fundamental_units()  gp: K.fu  magma: [K|fUK(g): g in Generators(UK)];  oscar: [K(fUK(a)) for a in gens(UK)] Regulator: $$3.39714980258$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);  oscar: regulator(K)

## Class number formula

\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 3.39714980258 \cdot 3}{2\cdot\sqrt{8732691}}\cr\approx \mathstrut & 0.427731776688 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula

x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 6*x^4 - 5*x^3 + 33*x^2 - 54*x + 111)

DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()

hK = K.class_number(); wK = K.unit_group().torsion_generator().order();

2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))

# self-contained Pari/GP code snippet to compute the analytic class number formula

K = bnfinit(x^6 - 3*x^5 + 6*x^4 - 5*x^3 + 33*x^2 - 54*x + 111, 1);

[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]

/* self-contained Magma code snippet to compute the analytic class number formula */

Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^6 - 3*x^5 + 6*x^4 - 5*x^3 + 33*x^2 - 54*x + 111);

OK := Integers(K); DK := Discriminant(OK);

UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);

r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);

hK := #clK; wK := #TorsionSubgroup(UK);

2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));

# self-contained Oscar code snippet to compute the analytic class number formula

Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - 3*x^5 + 6*x^4 - 5*x^3 + 33*x^2 - 54*x + 111);

OK = ring_of_integers(K); DK = discriminant(OK);

UK, fUK = unit_group(OK); clK, fclK = class_group(OK);

r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);

hK = order(clK); wK = torsion_units_order(K);

2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))

## Galois group

$C_6$ (as 6T1):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: G = GaloisGroup(K);

oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)

 A cyclic group of order 6 The 6 conjugacy class representatives for $C_6$ Character table for $C_6$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]

gp: L = nfsubfields(K); L[2..length(b)]

magma: L := Subfields(K); L[2..#L];

oscar: subfields(K)[2:end-1]

## Sibling algebras

 Twin sextic algebra: $$\Q(\zeta_{9})^+$$ $\times$ $$\Q(\sqrt{-11})$$ $\times$ $$\Q$$ Minimal sibling: This field is its own minimal sibling

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type ${\href{/padicField/2.6.0.1}{6} }$ R ${\href{/padicField/5.3.0.1}{3} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }$ R ${\href{/padicField/13.6.0.1}{6} }$ ${\href{/padicField/17.2.0.1}{2} }^{3}$ ${\href{/padicField/19.2.0.1}{2} }^{3}$ ${\href{/padicField/23.3.0.1}{3} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }$ ${\href{/padicField/31.3.0.1}{3} }^{2}$ ${\href{/padicField/37.1.0.1}{1} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }$ ${\href{/padicField/43.6.0.1}{6} }$ ${\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.1.0.1}{1} }^{6}$ ${\href{/padicField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:

p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:

p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])

// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))]; # to obtain a list of$[e_i,f_i]$for the factorization of the ideal$p\mathcal{O}_K$for$p=7$in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac] ## Local algebras for ramified primes$p$LabelPolynomial$efc$Galois group Slope content $$3$$ 3.3.4.2$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2] 3.3.4.2x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2]$$$11$$ 11.6.3.2$x^{6} + 37 x^{4} + 18 x^{3} + 367 x^{2} - 558 x + 972$$2$$3$$3$$C_6[\ ]_{2}^{3}$## Artin representations Label Dimension Conductor Artin stem field$G$Ind$\chi(c)$* 1.1.1t1.a.a$11$$$\Q$$$C_111$* 1.11.2t1.a.a$1 11 $$$\Q(\sqrt{-11})$$$C_2$(as 2T1)$1-1$* 1.9.3t1.a.a$1 3^{2}$$$\Q(\zeta_{9})^+$$$C_3$(as 3T1)$01$* 1.99.6t1.a.a$1 3^{2} \cdot 11 $6.0.8732691.1$C_6$(as 6T1)$0-1$* 1.9.3t1.a.b$1 3^{2}$$$\Q(\zeta_{9})^+$$$C_3$(as 3T1)$01$* 1.99.6t1.a.b$1 3^{2} \cdot 11 $6.0.8732691.1$C_6$(as 6T1)$0-1\$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.