Normalized defining polynomial
\( x^{6} + 13x^{4} + 50x^{2} + 49 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-8340544\)
\(\medspace = -\,2^{6}\cdot 19^{4}\)
|
| |
| Root discriminant: | \(14.24\) |
| |
| Galois root discriminant: | $2\cdot 19^{2/3}\approx 14.240734717803987$ | ||
| Ramified primes: |
\(2\), \(19\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_6$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(76=2^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{76}(1,·)$, $\chi_{76}(49,·)$, $\chi_{76}(7,·)$, $\chi_{76}(39,·)$, $\chi_{76}(11,·)$, $\chi_{76}(45,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-1}) \), 6.0.8340544.1$^{3}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{7}a^{5}-\frac{1}{7}a^{3}+\frac{1}{7}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
| |
| Relative class number: | $1$ |
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -\frac{1}{7} a^{5} - \frac{6}{7} a^{3} - \frac{1}{7} a \)
(order $4$)
|
| |
| Fundamental units: |
$a^{4}+8a^{2}+11$, $a^{4}+7a^{2}+8$
|
| |
| Regulator: | \( 7.80862678603 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 7.80862678603 \cdot 1}{4\cdot\sqrt{8340544}}\cr\approx \mathstrut & 0.167670666635 \end{aligned}\]
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 3.3.361.1 $\times$ \(\Q(\sqrt{-1}) \) $\times$ \(\Q\) |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }$ | ${\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a1.1 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 5$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ |
|
\(19\)
| 19.2.3.4a1.2 | $x^{6} + 54 x^{5} + 978 x^{4} + 6048 x^{3} + 1956 x^{2} + 216 x + 27$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *6 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *6 | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| *6 | 1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
| *6 | 1.76.6t1.a.a | $1$ | $ 2^{2} \cdot 19 $ | 6.0.8340544.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
| *6 | 1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
| *6 | 1.76.6t1.a.b | $1$ | $ 2^{2} \cdot 19 $ | 6.0.8340544.1 | $C_6$ (as 6T1) | $0$ | $-1$ |