Normalized defining polynomial
\( x^{6} - 9 x^{4} - 10 x^{3} + 91 x^{2} + 290 x + 314 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-83320384=-\,2^{6}\cdot 7^{2}\cdot 163^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{1911} a^{5} - \frac{121}{1911} a^{4} + \frac{709}{1911} a^{3} + \frac{67}{273} a^{2} + \frac{45}{91} a + \frac{59}{1911}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{16}{1911} a^{5} + \frac{25}{1911} a^{4} + \frac{122}{1911} a^{3} + \frac{20}{273} a^{2} - \frac{83}{91} a - \frac{2855}{1911} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{128}{1911} a^{5} - \frac{200}{1911} a^{4} - \frac{976}{1911} a^{3} + \frac{113}{273} a^{2} + \frac{482}{91} a + \frac{20929}{1911} \), \( \frac{536}{1911} a^{5} - \frac{428}{1911} a^{4} - \frac{5725}{1911} a^{3} + \frac{461}{273} a^{2} + \frac{322}{13} a + \frac{118711}{1911} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37.5212500781 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_{6}$ |
| Character table for $D_{6}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.4564.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | Deg 12 |
| Twin sextic algebra: | 3.1.4564.1 $\times$ \(\Q(\sqrt{1141}) \) $\times$ \(\Q\) |
| Degree 6 sibling: | 6.2.23767139536.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $163$ | 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2_7_163.2t1.1c1 | $1$ | $ 2^{2} \cdot 7 \cdot 163 $ | $x^{2} + 1141$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.7_163.2t1.1c1 | $1$ | $ 7 \cdot 163 $ | $x^{2} - x - 285$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 2.2e2_7_163.3t2.1c1 | $2$ | $ 2^{2} \cdot 7 \cdot 163 $ | $x^{3} + x - 26$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.2e2_7_163.6t3.3c1 | $2$ | $ 2^{2} \cdot 7 \cdot 163 $ | $x^{6} - 9 x^{4} - 10 x^{3} + 91 x^{2} + 290 x + 314$ | $D_{6}$ (as 6T3) | $1$ | $0$ |