Normalized defining polynomial
\( x^{6} - x^{5} + 25 x^{4} - 30 x^{3} + 603 x^{2} - 648 x + 729 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-766752507=-\,3^{3}\cdot 73^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(219=3\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{219}(64,·)$, $\chi_{219}(1,·)$, $\chi_{219}(8,·)$, $\chi_{219}(137,·)$, $\chi_{219}(74,·)$, $\chi_{219}(154,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{129843} a^{5} - \frac{4834}{129843} a^{4} - \frac{8993}{129843} a^{3} - \frac{11422}{43281} a^{2} + \frac{6484}{14427} a - \frac{200}{1603}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{200}{129843} a^{5} + \frac{191}{129843} a^{4} - \frac{4775}{129843} a^{3} + \frac{125}{43281} a^{2} - \frac{12797}{14427} a + \frac{1528}{1603} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{194}{18549} a^{5} - \frac{41}{18549} a^{4} + \frac{1025}{18549} a^{3} - \frac{7163}{6183} a^{2} + \frac{2747}{2061} a - \frac{328}{229} \), \( \frac{16}{4809} a^{5} - \frac{400}{4809} a^{4} + \frac{382}{4809} a^{3} - \frac{3216}{1603} a^{2} + \frac{3456}{1603} a - \frac{78385}{1603} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76.9918811976 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.5329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 3.3.5329.1 $\times$ \(\Q(\sqrt{-3}) \) $\times$ \(\Q\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $73$ | 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.73.3t1.1c1 | $1$ | $ 73 $ | $x^{3} - x^{2} - 24 x + 27$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_73.6t1.1c1 | $1$ | $ 3 \cdot 73 $ | $x^{6} - x^{5} + 25 x^{4} - 30 x^{3} + 603 x^{2} - 648 x + 729$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.73.3t1.1c2 | $1$ | $ 73 $ | $x^{3} - x^{2} - 24 x + 27$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_73.6t1.1c2 | $1$ | $ 3 \cdot 73 $ | $x^{6} - x^{5} + 25 x^{4} - 30 x^{3} + 603 x^{2} - 648 x + 729$ | $C_6$ (as 6T1) | $0$ | $-1$ |