Normalized defining polynomial
\( x^{6} - x^{5} + 30 x^{4} - 195 x^{3} + 2418 x^{2} + 2255 x + 825 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-72806786096=-\,2^{4}\cdot 11^{3}\cdot 43^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{35930325} a^{5} + \frac{3198469}{35930325} a^{4} + \frac{3443497}{7186065} a^{3} - \frac{1882519}{7186065} a^{2} + \frac{187219}{764475} a + \frac{1012076}{2395355}$
Class group and class number
$C_{3}\times C_{9}$, which has order $27$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{20353}{7186065} a^{5} - \frac{123278}{7186065} a^{4} - \frac{197504}{1437213} a^{3} - \frac{3122266}{1437213} a^{2} - \frac{286673}{152895} a - \frac{312030}{479071} \), \( \frac{183733}{11976775} a^{5} - \frac{114148}{11976775} a^{4} + \frac{1313506}{2395355} a^{3} - \frac{10764267}{2395355} a^{2} + \frac{11968202}{254825} a + \frac{46564919}{2395355} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 194.932187766 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 3.1.44.1 $\times$ 3.3.1849.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.6.4.1 | $x^{6} + 344 x^{3} + 49923$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.11.2t1.1c1 | $1$ | $ 11 $ | $x^{2} - x + 3$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.43.3t1.1c1 | $1$ | $ 43 $ | $x^{3} - x^{2} - 14 x - 8$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.11_43.6t1.2c1 | $1$ | $ 11 \cdot 43 $ | $x^{6} - x^{5} - 20 x^{4} + 39 x^{3} + 212 x^{2} - 649 x + 1067$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.11_43.6t1.2c2 | $1$ | $ 11 \cdot 43 $ | $x^{6} - x^{5} - 20 x^{4} + 39 x^{3} + 212 x^{2} - 649 x + 1067$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.43.3t1.1c2 | $1$ | $ 43 $ | $x^{3} - x^{2} - 14 x - 8$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.2e2_11.3t2.1c1 | $2$ | $ 2^{2} \cdot 11 $ | $x^{3} - x^{2} + x + 1$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.2e2_11_43e2.6t5.1c1 | $2$ | $ 2^{2} \cdot 11 \cdot 43^{2}$ | $x^{6} - x^{5} + 30 x^{4} - 195 x^{3} + 2418 x^{2} + 2255 x + 825$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| * | 2.2e2_11_43e2.6t5.1c2 | $2$ | $ 2^{2} \cdot 11 \cdot 43^{2}$ | $x^{6} - x^{5} + 30 x^{4} - 195 x^{3} + 2418 x^{2} + 2255 x + 825$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |