Normalized defining polynomial
\( x^{6} + 6 x^{4} - 27 x^{3} + 9 x^{2} - 81 x + 787 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-70774630295=-\,5\cdot 41^{3}\cdot 59^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{4} - \frac{1}{9} a^{2} - \frac{2}{9}$, $\frac{1}{117} a^{5} - \frac{5}{117} a^{4} + \frac{5}{117} a^{3} - \frac{1}{9} a^{2} + \frac{22}{117} a - \frac{35}{117}$
Class group and class number
$C_{8}$, which has order $8$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{11}{39} a^{5} + \frac{17}{117} a^{4} - \frac{62}{39} a^{3} - \frac{47}{9} a^{2} + \frac{593}{39} a + \frac{3395}{117} \), \( \frac{5}{13} a^{5} + \frac{100}{117} a^{4} - \frac{107}{39} a^{3} - \frac{94}{9} a^{2} + \frac{460}{39} a + \frac{9865}{117} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 185.34997085 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 6T13):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3^2:D_4$ |
| Character table for $C_3^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-2419}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 6.4.302375.1 |
| Degree 6 sibling: | 6.4.302375.1 |
| Degree 9 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $41$ | 41.6.3.1 | $x^{6} - 82 x^{4} + 1681 x^{2} - 11647649$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $59$ | 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.5_41_59.2t1.1c1 | $1$ | $ 5 \cdot 41 \cdot 59 $ | $x^{2} - x + 3024$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.41_59.2t1.1c1 | $1$ | $ 41 \cdot 59 $ | $x^{2} - x + 605$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.5_41_59.4t3.2c1 | $2$ | $ 5 \cdot 41 \cdot 59 $ | $x^{4} - x^{3} + 9 x^{2} + 25 x - 155$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 4.5e3_41e2_59e2.12t36.1c1 | $4$ | $ 5^{3} \cdot 41^{2} \cdot 59^{2}$ | $x^{6} + 6 x^{4} - 27 x^{3} + 9 x^{2} - 81 x + 787$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| * | 4.5_41e2_59e2.6t13.2c1 | $4$ | $ 5 \cdot 41^{2} \cdot 59^{2}$ | $x^{6} + 6 x^{4} - 27 x^{3} + 9 x^{2} - 81 x + 787$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ |
| 4.5e2_41_59.6t13.2c1 | $4$ | $ 5^{2} \cdot 41 \cdot 59 $ | $x^{6} + 6 x^{4} - 27 x^{3} + 9 x^{2} - 81 x + 787$ | $C_3^2:D_4$ (as 6T13) | $1$ | $2$ | |
| 4.5e2_41e3_59e3.12t34.1c1 | $4$ | $ 5^{2} \cdot 41^{3} \cdot 59^{3}$ | $x^{6} + 6 x^{4} - 27 x^{3} + 9 x^{2} - 81 x + 787$ | $C_3^2:D_4$ (as 6T13) | $1$ | $-2$ |