Properties

Label 6.0.69426531.1
Degree $6$
Signature $[0, 3]$
Discriminant $-\,3^{3}\cdot 137^{3}$
Root discriminant $20.27$
Ramified primes $3, 137$
Class number $2$
Class group $[2]$
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 6*x^4 + 16*x^3 + 106*x^2 + 174*x + 123)
 
gp: K = bnfinit(x^6 - 2*x^5 - 6*x^4 + 16*x^3 + 106*x^2 + 174*x + 123, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![123, 174, 106, 16, -6, -2, 1]);
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} - 6 x^{4} + 16 x^{3} + 106 x^{2} + 174 x + 123 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(-69426531=-\,3^{3}\cdot 137^{3}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $20.27$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $3, 137$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Gal(K/\Q)|$:  $6$
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{12} a^{4} - \frac{1}{12} a^{3} + \frac{1}{3} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{36} a^{5} - \frac{1}{12} a^{3} - \frac{11}{36} a^{2} - \frac{1}{3} a - \frac{1}{12}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $2$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  \( \frac{5}{18} a^{5} - \frac{11}{12} a^{4} - \frac{11}{12} a^{3} + \frac{131}{18} a^{2} + \frac{221}{12} a + \frac{137}{12} \),  \( \frac{1}{12} a^{5} - \frac{7}{12} a^{4} + \frac{4}{3} a^{3} + \frac{3}{4} a^{2} - \frac{1}{4} a - 11 \)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 48.6871846855 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Galois group

$S_3$ (as 6T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 6
The 3 conjugacy class representatives for $S_3$
Character table for $S_3$

Intermediate fields

\(\Q(\sqrt{-411}) \), 3.1.411.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 3.1.411.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\)
Degree 3 sibling: 3.1.411.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$137$137.2.1.2$x^{2} + 411$$2$$1$$1$$C_2$$[\ ]_{2}$
137.2.1.2$x^{2} + 411$$2$$1$$1$$C_2$$[\ ]_{2}$
137.2.1.2$x^{2} + 411$$2$$1$$1$$C_2$$[\ ]_{2}$