Normalized defining polynomial
\( x^{6} - 12x^{4} + 29x^{2} + 50 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-66724352\)
\(\medspace = -\,2^{9}\cdot 19^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(20.14\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
$\card{ \Gal(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{20}a^{5}-\frac{7}{20}a^{3}-\frac{1}{2}a^{2}-\frac{3}{10}a$
Monogenic: | No | |
Index: | $8$ | |
Inessential primes: | $2$ |
Class group and class number
$C_{3}$, which has order $3$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{10}a^{5}+\frac{1}{2}a^{4}+\frac{3}{10}a^{3}-\frac{5}{2}a^{2}-\frac{33}{5}a-6$, $a^{4}-5a^{2}-7$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 49.9141250784 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 49.9141250784 \cdot 3}{2\cdot\sqrt{66724352}}\cr\approx \mathstrut & 2.27358997010 \end{aligned}\]
Galois group
A solvable group of order 6 |
The 3 conjugacy class representatives for $S_3$ |
Character table for $S_3$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 3.1.2888.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | 3.1.2888.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\) |
Degree 3 sibling: | 3.1.2888.1 |
Multiplicative Galois module structure
$U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A$ |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.2.0.1}{2} }^{3}$ | ${\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
\(19\)
| 19.3.2.3 | $x^{3} + 38$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
19.3.2.3 | $x^{3} + 38$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
*2 | 2.2888.3t2.a.a | $2$ | $ 2^{3} \cdot 19^{2}$ | 6.0.66724352.2 | $S_3$ (as 6T2) | $1$ | $0$ |