Properties

Label 6.0.64387.1
Degree $6$
Signature $[0, 3]$
Discriminant $-\,31^{2}\cdot 67$
Root discriminant $6.33$
Ramified primes $31, 67$
Class number $1$
Class group Trivial
Galois group $S_4\times C_2$ (as 6T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, 4, -2, 0, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 2*x^3 + 4*x^2 + x + 1)
 
gp: K = bnfinit(x^6 - 2*x^5 - 2*x^3 + 4*x^2 + x + 1, 1)
 

Normalized defining polynomial

\( x^{6} - 2 x^{5} - 2 x^{3} + 4 x^{2} + x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-64387=-\,31^{2}\cdot 67\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $6.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $31, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{4} - a^{3} - 2 a \),  \( a^{5} - a^{3} - 3 a^{2} - a \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 0.98574296608 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_4$ (as 6T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $S_4\times C_2$
Character table for $S_4\times C_2$

Intermediate fields

3.1.31.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 4.2.139159.3 $\times$ \(\Q(\sqrt{2077}) \)
Degree 6 sibling: 6.2.1995997.2
Degree 8 siblings: 8.0.19365227281.1, 8.4.18609983417041.3
Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12
Degree 16 sibling: Deg 16
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }$ ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ R ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$31$31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$67$$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.1.1$x^{2} - 67$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.31_67.2t1.1c1$1$ $ 31 \cdot 67 $ $x^{2} - x - 519$ $C_2$ (as 2T1) $1$ $1$
1.31.2t1.1c1$1$ $ 31 $ $x^{2} - x + 8$ $C_2$ (as 2T1) $1$ $-1$
1.67.2t1.1c1$1$ $ 67 $ $x^{2} - x + 17$ $C_2$ (as 2T1) $1$ $-1$
2.31_67e2.6t3.1c1$2$ $ 31 \cdot 67^{2}$ $x^{6} - 2 x^{5} + 35 x^{4} + 117 x^{3} + 138 x^{2} + 2567 x - 144363$ $D_{6}$ (as 6T3) $1$ $0$
* 2.31.3t2.1c1$2$ $ 31 $ $x^{3} + x - 1$ $S_3$ (as 3T2) $1$ $0$
3.31_67e2.4t5.1c1$3$ $ 31 \cdot 67^{2}$ $x^{4} - x^{3} + 4 x^{2} - 27 x - 8$ $S_4$ (as 4T5) $1$ $1$
* 3.31_67.6t11.5c1$3$ $ 31 \cdot 67 $ $x^{6} - 2 x^{5} - 2 x^{3} + 4 x^{2} + x + 1$ $S_4\times C_2$ (as 6T11) $1$ $-1$
3.31e2_67.6t11.5c1$3$ $ 31^{2} \cdot 67 $ $x^{6} - 2 x^{5} - 2 x^{3} + 4 x^{2} + x + 1$ $S_4\times C_2$ (as 6T11) $1$ $1$
3.31e2_67e2.6t8.1c1$3$ $ 31^{2} \cdot 67^{2}$ $x^{4} - x^{3} + 4 x^{2} - 27 x - 8$ $S_4$ (as 4T5) $1$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.