Normalized defining polynomial
\( x^{6} - x^{5} + 45 x^{4} - 39 x^{3} + 1538 x^{2} + 184 x + 22336 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-608141349063=-\,3^{3}\cdot 29^{3}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2697=3\cdot 29\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2697}(1,·)$, $\chi_{2697}(869,·)$, $\chi_{2697}(2609,·)$, $\chi_{2697}(521,·)$, $\chi_{2697}(1741,·)$, $\chi_{2697}(2350,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{151904} a^{5} - \frac{1301}{75952} a^{4} + \frac{27107}{151904} a^{3} + \frac{8043}{75952} a^{2} + \frac{4273}{9494} a - \frac{1854}{4747}$
Class group and class number
$C_{2}\times C_{6}\times C_{126}$, which has order $1512$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{59}{75952} a^{5} - \frac{807}{37976} a^{4} + \frac{4321}{75952} a^{3} - \frac{19151}{37976} a^{2} + \frac{5263}{4747} a - \frac{90603}{4747} \), \( \frac{5}{4747} a^{5} + \frac{177}{18988} a^{4} + \frac{491}{9494} a^{3} + \frac{3671}{18988} a^{2} + \frac{4859}{9494} a + \frac{11915}{4747} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48.7831276503 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.3.961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-87}) \) $\times$ 3.3.961.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | R | R | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $31$ | 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_29.2t1.1c1 | $1$ | $ 3 \cdot 29 $ | $x^{2} - x + 22$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.31.3t1.1c1 | $1$ | $ 31 $ | $x^{3} - x^{2} - 10 x + 8$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_29_31.6t1.1c1 | $1$ | $ 3 \cdot 29 \cdot 31 $ | $x^{6} - x^{5} + 45 x^{4} - 39 x^{3} + 1538 x^{2} + 184 x + 22336$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.31.3t1.1c2 | $1$ | $ 31 $ | $x^{3} - x^{2} - 10 x + 8$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_29_31.6t1.1c2 | $1$ | $ 3 \cdot 29 \cdot 31 $ | $x^{6} - x^{5} + 45 x^{4} - 39 x^{3} + 1538 x^{2} + 184 x + 22336$ | $C_6$ (as 6T1) | $0$ | $-1$ |