Normalized defining polynomial
\( x^{6} - 3 x^{5} + 51 x^{4} + 104 x^{3} + 79 x^{2} + 3788 x + 8384 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-600322045711=-\,31^{3}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{518244} a^{5} + \frac{14177}{518244} a^{4} - \frac{48761}{518244} a^{3} - \frac{23345}{129561} a^{2} - \frac{4967}{172748} a + \frac{37790}{129561}$
Class group and class number
$C_{3}\times C_{9}\times C_{9}$, which has order $243$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{329}{259122} a^{5} + \frac{37}{259122} a^{4} + \frac{23195}{259122} a^{3} + \frac{56749}{129561} a^{2} + \frac{6963}{86374} a - \frac{139453}{129561} \), \( \frac{1343}{129561} a^{5} - \frac{5756}{129561} a^{4} + \frac{71843}{129561} a^{3} + \frac{5708}{129561} a^{2} + \frac{23304}{43187} a + \frac{4649989}{129561} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101.171223139 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | data not computed |
| Twin sextic algebra: | 3.1.31.1 $\times$ 3.3.4489.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $67$ | 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.31.2t1.1c1 | $1$ | $ 31 $ | $x^{2} - x + 8$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.67.3t1.1c1 | $1$ | $ 67 $ | $x^{3} - x^{2} - 22 x - 5$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.31_67.6t1.1c1 | $1$ | $ 31 \cdot 67 $ | $x^{6} - x^{5} - 21 x^{4} + 39 x^{3} + 663 x^{2} - 1355 x + 7375$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.31_67.6t1.1c2 | $1$ | $ 31 \cdot 67 $ | $x^{6} - x^{5} - 21 x^{4} + 39 x^{3} + 663 x^{2} - 1355 x + 7375$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.67.3t1.1c2 | $1$ | $ 67 $ | $x^{3} - x^{2} - 22 x - 5$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.31.3t2.1c1 | $2$ | $ 31 $ | $x^{3} + x - 1$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.31_67e2.6t5.1c1 | $2$ | $ 31 \cdot 67^{2}$ | $x^{6} - 3 x^{5} + 51 x^{4} + 104 x^{3} + 79 x^{2} + 3788 x + 8384$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| * | 2.31_67e2.6t5.1c2 | $2$ | $ 31 \cdot 67^{2}$ | $x^{6} - 3 x^{5} + 51 x^{4} + 104 x^{3} + 79 x^{2} + 3788 x + 8384$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |