Normalized defining polynomial
\( x^{6} - x^{5} - 34 x^{4} - 85 x^{3} + 1198 x^{2} + 5711 x + 15289 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-60003090875=-\,5^{3}\cdot 7^{5}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(256,·)$, $\chi_{455}(1,·)$, $\chi_{455}(16,·)$, $\chi_{455}(209,·)$, $\chi_{455}(269,·)$, $\chi_{455}(159,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{3} + \frac{3}{14} a^{2} + \frac{3}{14} a - \frac{3}{7}$, $\frac{1}{28} a^{4} + \frac{1}{28} a^{2} - \frac{2}{7} a - \frac{3}{28}$, $\frac{1}{21028} a^{5} - \frac{163}{21028} a^{4} + \frac{87}{21028} a^{3} - \frac{3665}{21028} a^{2} + \frac{887}{21028} a + \frac{9213}{21028}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{751} a^{5} - \frac{29}{10514} a^{4} - \frac{142}{5257} a^{3} - \frac{993}{10514} a^{2} + \frac{201}{5257} a - \frac{36989}{10514} \), \( \frac{43}{10514} a^{5} - \frac{125}{5257} a^{4} - \frac{765}{10514} a^{3} + \frac{1935}{5257} a^{2} + \frac{4805}{1502} a + \frac{49006}{5257} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62.4891977899 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 3.3.8281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | 3.3.8281.1 $\times$ \(\Q(\sqrt{-35}) \) $\times$ \(\Q\) |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| $7$ | 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.5_7.2t1.1c1 | $1$ | $ 5 \cdot 7 $ | $x^{2} - x + 9$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.7_13.3t1.2c1 | $1$ | $ 7 \cdot 13 $ | $x^{3} - x^{2} - 30 x + 64$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.5_7_13.6t1.4c1 | $1$ | $ 5 \cdot 7 \cdot 13 $ | $x^{6} - x^{5} - 34 x^{4} - 85 x^{3} + 1198 x^{2} + 5711 x + 15289$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.7_13.3t1.2c2 | $1$ | $ 7 \cdot 13 $ | $x^{3} - x^{2} - 30 x + 64$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.5_7_13.6t1.4c2 | $1$ | $ 5 \cdot 7 \cdot 13 $ | $x^{6} - x^{5} - 34 x^{4} - 85 x^{3} + 1198 x^{2} + 5711 x + 15289$ | $C_6$ (as 6T1) | $0$ | $-1$ |