Normalized defining polynomial
\( x^{6} - x^{5} + 73 x^{4} - 378 x^{3} + 5409 x^{2} - 16200 x + 50625 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-59869095867=-\,3^{3}\cdot 7^{4}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(651=3\cdot 7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{651}(1,·)$, $\chi_{651}(242,·)$, $\chi_{651}(625,·)$, $\chi_{651}(25,·)$, $\chi_{651}(218,·)$, $\chi_{651}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{28399275} a^{5} - \frac{1514701}{28399275} a^{4} - \frac{3023927}{28399275} a^{3} - \frac{238614}{1051825} a^{2} + \frac{1558501}{3155475} a - \frac{1752}{42073}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{584}{9466425} a^{5} + \frac{559}{9466425} a^{4} - \frac{40807}{9466425} a^{3} + \frac{87527}{9466425} a^{2} - \frac{335959}{1051825} a + \frac{40248}{42073} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{71056}{9466425} a^{5} + \frac{450694}{9466425} a^{4} + \frac{4965038}{9466425} a^{3} - \frac{10649518}{9466425} a^{2} + \frac{7866531}{1051825} a + \frac{222050}{42073} \), \( \frac{265}{378657} a^{5} - \frac{19345}{378657} a^{4} - \frac{102443}{378657} a^{3} - \frac{159265}{42073} a^{2} + \frac{477000}{42073} a - \frac{2551009}{42073} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 112.817848262 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.47089.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-3}) \) $\times$ 3.3.47089.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $31$ | 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.7_31.3t1.2c1 | $1$ | $ 7 \cdot 31 $ | $x^{3} - x^{2} - 72 x + 225$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_7_31.6t1.3c1 | $1$ | $ 3 \cdot 7 \cdot 31 $ | $x^{6} - x^{5} + 73 x^{4} - 378 x^{3} + 5409 x^{2} - 16200 x + 50625$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.7_31.3t1.2c2 | $1$ | $ 7 \cdot 31 $ | $x^{3} - x^{2} - 72 x + 225$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3_7_31.6t1.3c2 | $1$ | $ 3 \cdot 7 \cdot 31 $ | $x^{6} - x^{5} + 73 x^{4} - 378 x^{3} + 5409 x^{2} - 16200 x + 50625$ | $C_6$ (as 6T1) | $0$ | $-1$ |