Normalized defining polynomial
\( x^{6} - x^{5} - 3x^{4} - 6x^{3} - x^{2} + 23x + 27 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-58492928\)
\(\medspace = -\,2^{11}\cdot 13^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(19.70\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{11/4}13^{2/3}\approx 37.1930153725407$ | ||
Ramified primes: |
\(2\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{3}$, which has order $3$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{2}a^{4}+\frac{1}{2}a^{3}-a^{2}-\frac{5}{2}a-\frac{17}{2}$, $\frac{1}{4}a^{5}-a^{4}+\frac{5}{4}a^{3}-\frac{9}{4}a^{2}+\frac{9}{2}a-\frac{7}{4}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 35.8647177648 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 35.8647177648 \cdot 3}{2\cdot\sqrt{58492928}}\cr\approx \mathstrut & 1.74480380995 \end{aligned}\]
Galois group
A non-solvable group of order 120 |
The 7 conjugacy class representatives for $\PGL(2,5)$ |
Character table for $\PGL(2,5)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
Twin sextic algebra: | 5.3.346112.1 $\times$ \(\Q\) |
Degree 5 sibling: | 5.3.346112.1 |
Degree 10 siblings: | 10.0.958348132352.1, 10.4.161960834367488.1 |
Degree 12 sibling: | 12.0.218971048064843776.81 |
Degree 15 sibling: | deg 15 |
Degree 20 siblings: | deg 20, deg 20, deg 20 |
Degree 24 sibling: | deg 24 |
Degree 30 siblings: | deg 30, deg 30, deg 30 |
Degree 40 sibling: | deg 40 |
Minimal sibling: | 5.3.346112.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | R | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.4.11.17 | $x^{4} + 8 x^{3} + 8 x + 2$ | $4$ | $1$ | $11$ | $D_{4}$ | $[3, 4]^{2}$ | |
\(13\)
| 13.6.4.2 | $x^{6} - 156 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
4.346112.10t12.b.a | $4$ | $ 2^{11} \cdot 13^{2}$ | 6.0.58492928.4 | $\PGL(2,5)$ (as 6T14) | $1$ | $-2$ | |
4.346112.5t5.b.a | $4$ | $ 2^{11} \cdot 13^{2}$ | 6.0.58492928.4 | $\PGL(2,5)$ (as 6T14) | $1$ | $2$ | |
5.467943424.10t13.d.a | $5$ | $ 2^{14} \cdot 13^{4}$ | 6.0.58492928.4 | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ | |
* | 5.58492928.6t14.d.a | $5$ | $ 2^{11} \cdot 13^{4}$ | 6.0.58492928.4 | $\PGL(2,5)$ (as 6T14) | $1$ | $-1$ |
6.14974189568.20t30.b.a | $6$ | $ 2^{19} \cdot 13^{4}$ | 6.0.58492928.4 | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ |