# Properties

 Label 6.0.58492928.4 Degree $6$ Signature $[0, 3]$ Discriminant $-58492928$ Root discriminant $$19.70$$ Ramified primes $2,13$ Class number $3$ Class group [3] Galois group $\PGL(2,5)$ (as 6T14)

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 3*x^4 - 6*x^3 - x^2 + 23*x + 27)

gp: K = bnfinit(y^6 - y^5 - 3*y^4 - 6*y^3 - y^2 + 23*y + 27, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 - x^5 - 3*x^4 - 6*x^3 - x^2 + 23*x + 27);

oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - x^5 - 3*x^4 - 6*x^3 - x^2 + 23*x + 27)

$$x^{6} - x^{5} - 3x^{4} - 6x^{3} - x^{2} + 23x + 27$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

oscar: defining_polynomial(K)

## Invariants

 Degree: $6$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K);  oscar: degree(K) Signature: $[0, 3]$ sage: K.signature()  gp: K.sign  magma: Signature(K);  oscar: signature(K) Discriminant: $$-58492928$$ -58492928 $$\medspace = -\,2^{11}\cdot 13^{4}$$ sage: K.disc()  gp: K.disc  magma: OK := Integers(K); Discriminant(OK);  oscar: OK = ring_of_integers(K); discriminant(OK) Root discriminant: $$19.70$$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(OK))^(1/Degree(K));  oscar: (1.0 * dK)^(1/degree(K)) Galois root discriminant: $2^{11/4}13^{2/3}\approx 37.1930153725407$ Ramified primes: $$2$$, $$13$$ 2, 13 sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(OK));  oscar: prime_divisors(discriminant((OK))) Discriminant root field: $$\Q(\sqrt{-2})$$ $\card{ \Aut(K/\Q) }$: $1$ sage: K.automorphisms()  magma: Automorphisms(K);  oscar: automorphisms(K) This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

oscar: basis(OK)

 Monogenic: Not computed Index: $1$ Inessential primes: None

## Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

oscar: class_group(K)

## Unit group

sage: UK = K.unit_group()

magma: UK, fUK := UnitGroup(K);

oscar: UK, fUK = unit_group(OK)

 Rank: $2$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K);  oscar: rank(UK) Torsion generator: $$-1$$ -1  (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  oscar: torsion_units_generator(OK) Fundamental units: $\frac{1}{2}a^{4}+\frac{1}{2}a^{3}-a^{2}-\frac{5}{2}a-\frac{17}{2}$, $\frac{1}{4}a^{5}-a^{4}+\frac{5}{4}a^{3}-\frac{9}{4}a^{2}+\frac{9}{2}a-\frac{7}{4}$ 1/2*a^4 + 1/2*a^3 - a^2 - 5/2*a - 17/2, 1/4*a^5 - a^4 + 5/4*a^3 - 9/4*a^2 + 9/2*a - 7/4 sage: UK.fundamental_units()  gp: K.fu  magma: [K|fUK(g): g in Generators(UK)];  oscar: [K(fUK(a)) for a in gens(UK)] Regulator: $$35.8647177648$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);  oscar: regulator(K)

## Class number formula

\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 35.8647177648 \cdot 3}{2\cdot\sqrt{58492928}}\cr\approx \mathstrut & 1.74480380995 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula

x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 3*x^4 - 6*x^3 - x^2 + 23*x + 27)

DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()

hK = K.class_number(); wK = K.unit_group().torsion_generator().order();

2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))

# self-contained Pari/GP code snippet to compute the analytic class number formula

K = bnfinit(x^6 - x^5 - 3*x^4 - 6*x^3 - x^2 + 23*x + 27, 1);

[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]

/* self-contained Magma code snippet to compute the analytic class number formula */

Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^6 - x^5 - 3*x^4 - 6*x^3 - x^2 + 23*x + 27);

OK := Integers(K); DK := Discriminant(OK);

UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);

r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);

hK := #clK; wK := #TorsionSubgroup(UK);

2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));

# self-contained Oscar code snippet to compute the analytic class number formula

Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - x^5 - 3*x^4 - 6*x^3 - x^2 + 23*x + 27);

OK = ring_of_integers(K); DK = discriminant(OK);

UK, fUK = unit_group(OK); clK, fclK = class_group(OK);

r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);

hK = order(clK); wK = torsion_units_order(K);

2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))

## Galois group

$S_5$ (as 6T14):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: G = GaloisGroup(K);

oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)

 A non-solvable group of order 120 The 7 conjugacy class representatives for $\PGL(2,5)$ Character table for $\PGL(2,5)$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]

gp: L = nfsubfields(K); L[2..length(b)]

magma: L := Subfields(K); L[2..#L];

oscar: subfields(K)[2:end-1]

## Sibling algebras

 Twin sextic algebra: 5.3.346112.1 $\times$ $$\Q$$ Degree 5 sibling: 5.3.346112.1 Degree 10 siblings: 10.0.958348132352.1, 10.4.161960834367488.1 Degree 12 sibling: 12.0.218971048064843776.81 Degree 15 sibling: deg 15 Degree 20 siblings: deg 20, deg 20, deg 20 Degree 24 sibling: deg 24 Degree 30 siblings: deg 30, deg 30, deg 30 Degree 40 sibling: deg 40 Minimal sibling: 5.3.346112.1

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type R ${\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ R ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }$ ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{3}$ ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }$ ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:

p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:

p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])

// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))]; # to obtain a list of$[e_i,f_i]$for the factorization of the ideal$p\mathcal{O}_K$for$p=7$in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac] ## Local algebras for ramified primes$p$LabelPolynomial$efc$Galois group Slope content $$2$$ 2.2.0.1$x^{2} + x + 1$$1$$2$$0$$C_2$$[\ ]^{2} 2.4.11.17x^{4} + 8 x^{3} + 8 x + 2$$4$$1$$11$$D_{4}$$[3, 4]^{2}$$$13$$ 13.6.4.2$x^{6} - 156 x^{3} + 338$$3$$2$$4$$C_6[\ ]_{3}^{2}$## Artin representations Label Dimension Conductor Artin stem field$G$Ind$\chi(c)$* 1.1.1t1.a.a$11$$$\Q$$$C_111$1.8.2t1.b.a$1 2^{3}$$$\Q(\sqrt{-2})$$$C_2$(as 2T1)$1-1$4.346112.10t12.b.a$4 2^{11} \cdot 13^{2}$6.0.58492928.4$\PGL(2,5)$(as 6T14)$1-2$4.346112.5t5.b.a$4 2^{11} \cdot 13^{2}$6.0.58492928.4$\PGL(2,5)$(as 6T14)$12$5.467943424.10t13.d.a$5 2^{14} \cdot 13^{4}$6.0.58492928.4$\PGL(2,5)$(as 6T14)$11$* 5.58492928.6t14.d.a$5 2^{11} \cdot 13^{4}$6.0.58492928.4$\PGL(2,5)$(as 6T14)$1-1$6.14974189568.20t30.b.a$6 2^{19} \cdot 13^{4}$6.0.58492928.4$\PGL(2,5)$(as 6T14)$10\$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.