magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -9, 15, -12, 4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + 4*x^4 - 12*x^3 + 15*x^2 - 9*x + 3)
gp: K = bnfinit(x^6 - x^5 + 4*x^4 - 12*x^3 + 15*x^2 - 9*x + 3, 1)
Normalized defining polynomial
\( x^{6} - x^{5} + 4 x^{4} - 12 x^{3} + 15 x^{2} - 9 x + 3 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5787963=-\,3^{3}\cdot 463^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 463$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{5} + 4 a^{3} - 8 a^{2} + 7 a - 2 \), \( a^{5} - a^{4} + 3 a^{3} - 13 a^{2} + 9 a - 5 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12.1291618824 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $\PGL(2,5)$ |
| Character table for $\PGL(2,5)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ 5.3.5787963.1 |
| Degree 5 sibling: | 5.3.5787963.1 |
| Degree 10 siblings: | 10.4.100501547068107.1, Deg 10 |
| Degree 12 sibling: | Deg 12 |
| Degree 15 sibling: | Deg 15 |
| Degree 20 siblings: | Deg 20, Deg 20, Deg 20 |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 463 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 4.3e3_463e2.10t12.2c1 | $4$ | $ 3^{3} \cdot 463^{2}$ | $x^{6} - x^{5} + 4 x^{4} - 12 x^{3} + 15 x^{2} - 9 x + 3$ | $\PGL(2,5)$ (as 6T14) | $1$ | $-2$ | |
| 4.3e3_463e2.5t5.2c1 | $4$ | $ 3^{3} \cdot 463^{2}$ | $x^{6} - x^{5} + 4 x^{4} - 12 x^{3} + 15 x^{2} - 9 x + 3$ | $\PGL(2,5)$ (as 6T14) | $1$ | $2$ | |
| 5.3e4_463e2.10t13.2c1 | $5$ | $ 3^{4} \cdot 463^{2}$ | $x^{6} - x^{5} + 4 x^{4} - 12 x^{3} + 15 x^{2} - 9 x + 3$ | $\PGL(2,5)$ (as 6T14) | $1$ | $1$ | |
| * | 5.3e3_463e2.6t14.2c1 | $5$ | $ 3^{3} \cdot 463^{2}$ | $x^{6} - x^{5} + 4 x^{4} - 12 x^{3} + 15 x^{2} - 9 x + 3$ | $\PGL(2,5)$ (as 6T14) | $1$ | $-1$ |
| 6.3e5_463e4.20t35.2c1 | $6$ | $ 3^{5} \cdot 463^{4}$ | $x^{6} - x^{5} + 4 x^{4} - 12 x^{3} + 15 x^{2} - 9 x + 3$ | $\PGL(2,5)$ (as 6T14) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.