Properties

Label 6.0.568803016375.3
Degree $6$
Signature $[0, 3]$
Discriminant $-\,5^{3}\cdot 11^{3}\cdot 43^{4}$
Root discriminant $91.02$
Ramified primes $5, 11, 43$
Class number $1008$
Class group $[2, 6, 84]$
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11264, -1672, 762, 17, 13, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + 13*x^4 + 17*x^3 + 762*x^2 - 1672*x + 11264)
 
gp: K = bnfinit(x^6 - x^5 + 13*x^4 + 17*x^3 + 762*x^2 - 1672*x + 11264, 1)
 

Normalized defining polynomial

\( x^{6} - x^{5} + 13 x^{4} + 17 x^{3} + 762 x^{2} - 1672 x + 11264 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-568803016375=-\,5^{3}\cdot 11^{3}\cdot 43^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $91.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2365=5\cdot 11\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{2365}(1,·)$, $\chi_{2365}(1154,·)$, $\chi_{2365}(1541,·)$, $\chi_{2365}(2199,·)$, $\chi_{2365}(1979,·)$, $\chi_{2365}(221,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{66952} a^{5} + \frac{4023}{66952} a^{4} - \frac{13819}{66952} a^{3} - \frac{4003}{66952} a^{2} - \frac{2677}{33476} a + \frac{1547}{8369}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}\times C_{84}$, which has order $1008$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{23}{33476} a^{5} + \frac{235}{16738} a^{4} + \frac{185}{33476} a^{3} - \frac{5}{16738} a^{2} + \frac{6875}{8369} a - \frac{20897}{8369} \),  \( \frac{75}{33476} a^{5} + \frac{441}{33476} a^{4} + \frac{1331}{33476} a^{3} + \frac{1059}{33476} a^{2} + \frac{16819}{16738} a + \frac{106515}{8369} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 75.6874575318 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6$ (as 6T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 6
The 6 conjugacy class representatives for $C_6$
Character table for $C_6$

Intermediate fields

\(\Q(\sqrt{-55}) \), 3.3.1849.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: \(\Q\) $\times$ \(\Q(\sqrt{-55}) \) $\times$ 3.3.1849.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/3.6.0.1}{6} }$ R ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$11$11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
$43$43.3.2.1$x^{3} - 43$$3$$1$$2$$C_3$$[\ ]_{3}$
43.3.2.1$x^{3} - 43$$3$$1$$2$$C_3$$[\ ]_{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.5_11.2t1.1c1$1$ $ 5 \cdot 11 $ $x^{2} - x + 14$ $C_2$ (as 2T1) $1$ $-1$
* 1.43.3t1.1c1$1$ $ 43 $ $x^{3} - x^{2} - 14 x - 8$ $C_3$ (as 3T1) $0$ $1$
* 1.5_11_43.6t1.1c1$1$ $ 5 \cdot 11 \cdot 43 $ $x^{6} - x^{5} + 13 x^{4} + 17 x^{3} + 762 x^{2} - 1672 x + 11264$ $C_6$ (as 6T1) $0$ $-1$
* 1.43.3t1.1c2$1$ $ 43 $ $x^{3} - x^{2} - 14 x - 8$ $C_3$ (as 3T1) $0$ $1$
* 1.5_11_43.6t1.1c2$1$ $ 5 \cdot 11 \cdot 43 $ $x^{6} - x^{5} + 13 x^{4} + 17 x^{3} + 762 x^{2} - 1672 x + 11264$ $C_6$ (as 6T1) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.