Normalized defining polynomial
\( x^{6} - 10x^{3} + 25x^{2} + 50x + 50 \)
Invariants
Degree: | $6$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-54760000\) \(\medspace = -\,2^{6}\cdot 5^{4}\cdot 37^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(19.49\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{2/3}37^{1/2}\approx 35.57221107185714$ | ||
Ramified primes: | \(2\), \(5\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{5}a^{3}$, $\frac{1}{10}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{30}a^{5}-\frac{1}{30}a^{4}+\frac{1}{30}a^{3}-\frac{1}{6}a^{2}-\frac{1}{3}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $2$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{1}{30} a^{5} + \frac{1}{30} a^{4} - \frac{1}{30} a^{3} + \frac{1}{6} a^{2} - a - \frac{2}{3} \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{10}a^{5}+\frac{1}{10}a^{4}-\frac{1}{2}a^{3}-\frac{7}{2}a^{2}-6a-4$, $\frac{23}{10}a^{5}+\frac{9}{10}a^{4}-\frac{19}{2}a^{3}-\frac{149}{2}a^{2}-103a-74$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 151.481840092 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 151.481840092 \cdot 1}{4\cdot\sqrt{54760000}}\cr\approx \mathstrut & 1.26942914755 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_{6}$ |
Character table for $D_{6}$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 3.1.3700.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | deg 12 |
Twin sextic algebra: | 3.1.3700.1 $\times$ \(\Q(\sqrt{37}) \) $\times$ \(\Q\) |
Degree 6 sibling: | 6.2.506530000.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.4.4.1 | $x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
\(5\) | 5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
5.3.2.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(37\) | $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
37.2.1.1 | $x^{2} + 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.1 | $x^{2} + 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.148.2t1.a.a | $1$ | $ 2^{2} \cdot 37 $ | \(\Q(\sqrt{-37}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.37.2t1.a.a | $1$ | $ 37 $ | \(\Q(\sqrt{37}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 2.3700.3t2.a.a | $2$ | $ 2^{2} \cdot 5^{2} \cdot 37 $ | 3.1.3700.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.3700.6t3.b.a | $2$ | $ 2^{2} \cdot 5^{2} \cdot 37 $ | 6.0.54760000.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |