Normalized defining polynomial
\( x^{6} - 3 x^{5} + 51 x^{4} - 41 x^{3} + 3084 x^{2} - 9252 x + 81264 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-541760081751=-\,3^{8}\cdot 7^{5}\cdot 17^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1071=3^{2}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1071}(1,·)$, $\chi_{1071}(562,·)$, $\chi_{1071}(118,·)$, $\chi_{1071}(934,·)$, $\chi_{1071}(985,·)$, $\chi_{1071}(970,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{14} a^{3} + \frac{1}{7} a^{2} - \frac{1}{14} a + \frac{3}{7}$, $\frac{1}{56} a^{4} - \frac{1}{28} a^{3} - \frac{9}{56} a^{2} + \frac{5}{28} a - \frac{3}{7}$, $\frac{1}{70672} a^{5} - \frac{507}{70672} a^{4} - \frac{607}{70672} a^{3} + \frac{10579}{70672} a^{2} + \frac{12967}{35336} a + \frac{869}{8834}$
Class group and class number
$C_{3}\times C_{3}\times C_{390}$, which has order $3510$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{15}{35336} a^{5} - \frac{33}{35336} a^{4} + \frac{991}{35336} a^{3} - \frac{327}{35336} a^{2} + \frac{7729}{17668} a + \frac{4832}{4417} \), \( \frac{3}{8834} a^{5} + \frac{113}{17668} a^{4} + \frac{36}{4417} a^{3} + \frac{2267}{17668} a^{2} + \frac{1289}{1262} a + \frac{55229}{4417} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50.3767558277 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), 3.3.3969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-119}) \) $\times$ 3.3.3969.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $7$ | 7.6.5.1 | $x^{6} - 28$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.7_17.2t1.1c1 | $1$ | $ 7 \cdot 17 $ | $x^{2} - x + 30$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.3e2_7.3t1.2c1 | $1$ | $ 3^{2} \cdot 7 $ | $x^{3} - 21 x - 28$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3e2_7_17.6t1.2c1 | $1$ | $ 3^{2} \cdot 7 \cdot 17 $ | $x^{6} - 3 x^{5} + 51 x^{4} - 41 x^{3} + 3084 x^{2} - 9252 x + 81264$ | $C_6$ (as 6T1) | $0$ | $-1$ |
| * | 1.3e2_7.3t1.2c2 | $1$ | $ 3^{2} \cdot 7 $ | $x^{3} - 21 x - 28$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3e2_7_17.6t1.2c2 | $1$ | $ 3^{2} \cdot 7 \cdot 17 $ | $x^{6} - 3 x^{5} + 51 x^{4} - 41 x^{3} + 3084 x^{2} - 9252 x + 81264$ | $C_6$ (as 6T1) | $0$ | $-1$ |