Normalized defining polynomial
\( x^{6} + 6 x^{4} - 5 x^{3} + 9 x^{2} - 15 x + 28 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-480048687=-\,3^{9}\cdot 29^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{26} a^{5} + \frac{5}{26} a^{4} + \frac{5}{26} a^{3} - \frac{3}{13} a^{2} + \frac{5}{26} a + \frac{5}{13}$
Class group and class number
$C_{18}$, which has order $18$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{7}{13} a^{5} - \frac{4}{13} a^{4} + \frac{35}{13} a^{3} - \frac{29}{13} a^{2} + \frac{9}{13} a + \frac{31}{13} \), \( \frac{6}{13} a^{5} + \frac{4}{13} a^{4} + \frac{30}{13} a^{3} - \frac{23}{13} a^{2} - \frac{9}{13} a - \frac{135}{13} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48.0250105199 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 6T5):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Galois closure: | 18.0.110625655867925924191778703.1 |
| Twin sextic algebra: | \(\Q(\zeta_{9})^+\) $\times$ 3.1.87.1 |
| Degree 9 sibling: | 9.3.38883943647.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| $29$ | 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_29.2t1.1c1 | $1$ | $ 3 \cdot 29 $ | $x^{2} - x + 22$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.3e2_29.6t1.2c1 | $1$ | $ 3^{2} \cdot 29 $ | $x^{6} + 42 x^{4} - 22 x^{3} + 441 x^{2} - 462 x + 1513$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3e2_29.6t1.2c2 | $1$ | $ 3^{2} \cdot 29 $ | $x^{6} + 42 x^{4} - 22 x^{3} + 441 x^{2} - 462 x + 1513$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3e2.3t1.1c1 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3e2.3t1.1c2 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.3_29.3t2.1c1 | $2$ | $ 3 \cdot 29 $ | $x^{3} - x^{2} + 2 x + 1$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.3e4_29.6t5.2c1 | $2$ | $ 3^{4} \cdot 29 $ | $x^{6} + 6 x^{4} - 5 x^{3} + 9 x^{2} - 15 x + 28$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
| * | 2.3e4_29.6t5.2c2 | $2$ | $ 3^{4} \cdot 29 $ | $x^{6} + 6 x^{4} - 5 x^{3} + 9 x^{2} - 15 x + 28$ | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |