Properties

Label 6.0.47156812875.1
Degree $6$
Signature $[0, 3]$
Discriminant $-\,3^{4}\cdot 5^{3}\cdot 167^{3}$
Root discriminant $60.11$
Ramified primes $3, 5, 167$
Class number $32$
Class group $[2, 2, 8]$
Galois group $S_4\times C_2$ (as 6T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1225, -690, 759, -139, 72, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^5 + 72*x^4 - 139*x^3 + 759*x^2 - 690*x + 1225)
 
gp: K = bnfinit(x^6 - 3*x^5 + 72*x^4 - 139*x^3 + 759*x^2 - 690*x + 1225, 1)
 

Normalized defining polynomial

\( x^{6} - 3 x^{5} + 72 x^{4} - 139 x^{3} + 759 x^{2} - 690 x + 1225 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $6$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-47156812875=-\,3^{4}\cdot 5^{3}\cdot 167^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 167$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{375} a^{4} - \frac{2}{375} a^{3} + \frac{11}{25} a^{2} - \frac{164}{375} a + \frac{29}{75}$, $\frac{1}{1125} a^{5} - \frac{1}{1125} a^{4} + \frac{538}{1125} a^{3} + \frac{1}{1125} a^{2} + \frac{356}{1125} a - \frac{46}{225}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{8}$, which has order $32$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $2$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{125} a^{4} - \frac{2}{125} a^{3} + \frac{8}{25} a^{2} - \frac{39}{125} a + \frac{54}{25} \),  \( \frac{2}{125} a^{4} - \frac{4}{125} a^{3} + \frac{16}{25} a^{2} - \frac{78}{125} a + \frac{33}{25} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 42.7263368923 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_4$ (as 6T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $S_4\times C_2$
Character table for $S_4\times C_2$

Intermediate fields

3.3.2505.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling algebras

Twin sextic algebra: 4.4.22545.1 $\times$ \(\Q(\sqrt{-3}) \)
Degree 6 sibling: 6.0.18825075.2
Degree 8 siblings: 8.0.508277025.1, 8.0.354383448755625.4
Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12
Degree 16 sibling: Deg 16
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.3.2$x^{4} - 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
167Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.3_5_167.2t1.1c1$1$ $ 3 \cdot 5 \cdot 167 $ $x^{2} - x - 626$ $C_2$ (as 2T1) $1$ $1$
1.5_167.2t1.1c1$1$ $ 5 \cdot 167 $ $x^{2} - x + 209$ $C_2$ (as 2T1) $1$ $-1$
2.3_5_167.6t3.5c1$2$ $ 3 \cdot 5 \cdot 167 $ $x^{6} - 2 x^{5} + x^{4} + 7 x^{3} + 20 x^{2} + 135 x + 181$ $D_{6}$ (as 6T3) $1$ $-2$
* 2.3_5_167.3t2.1c1$2$ $ 3 \cdot 5 \cdot 167 $ $x^{3} - x^{2} - 10 x - 5$ $S_3$ (as 3T2) $1$ $2$
3.3e3_5_167.4t5.1c1$3$ $ 3^{3} \cdot 5 \cdot 167 $ $x^{4} - x^{3} - 6 x^{2} + 5 x + 4$ $S_4$ (as 4T5) $1$ $3$
* 3.3e3_5e2_167e2.6t11.2c1$3$ $ 3^{3} \cdot 5^{2} \cdot 167^{2}$ $x^{6} - 3 x^{5} + 72 x^{4} - 139 x^{3} + 759 x^{2} - 690 x + 1225$ $S_4\times C_2$ (as 6T11) $1$ $-3$
3.3e2_5_167.6t11.2c1$3$ $ 3^{2} \cdot 5 \cdot 167 $ $x^{6} - 3 x^{5} + 72 x^{4} - 139 x^{3} + 759 x^{2} - 690 x + 1225$ $S_4\times C_2$ (as 6T11) $1$ $-3$
3.3e2_5e2_167e2.6t8.2c1$3$ $ 3^{2} \cdot 5^{2} \cdot 167^{2}$ $x^{4} - x^{3} - 6 x^{2} + 5 x + 4$ $S_4$ (as 4T5) $1$ $3$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.