Normalized defining polynomial
\( x^{6} - x^{5} + 346 x^{4} - 347 x^{3} + 18258 x^{2} + 348 x + 265355 \)
Invariants
| Degree: | $6$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-454849890599=-\,13^{5}\cdot 107^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1391=13\cdot 107\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1391}(1,·)$, $\chi_{1391}(750,·)$, $\chi_{1391}(641,·)$, $\chi_{1391}(536,·)$, $\chi_{1391}(855,·)$, $\chi_{1391}(1390,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10} a^{4} + \frac{3}{10} a^{3} - \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{2263674500} a^{5} - \frac{2652947}{1131837250} a^{4} - \frac{203480703}{565918625} a^{3} - \frac{1059530231}{2263674500} a^{2} - \frac{92498459}{2263674500} a - \frac{68445153}{452734900}$
Class group and class number
$C_{5}\times C_{220}$, which has order $1100$
Unit group
| Rank: | $2$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{21353}{1131837250} a^{5} + \frac{154143}{1131837250} a^{4} + \frac{6720289}{1131837250} a^{3} + \frac{16291991}{565918625} a^{2} + \frac{162773673}{1131837250} a + \frac{129228183}{113183725} \), \( \frac{116343}{2263674500} a^{5} + \frac{102627}{565918625} a^{4} + \frac{18167467}{1131837250} a^{3} + \frac{148334617}{2263674500} a^{2} + \frac{865827363}{2263674500} a + \frac{1624292771}{452734900} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5.46019947038 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 6 |
| The 6 conjugacy class representatives for $C_6$ |
| Character table for $C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1391}) \), 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
| Twin sextic algebra: | \(\Q\) $\times$ \(\Q(\sqrt{-1391}) \) $\times$ 3.3.169.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| $107$ | 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |