# Properties

 Label 6.0.44700103.1 Degree $6$ Signature $[0, 3]$ Discriminant $-44700103$ Root discriminant $18.84$ Ramified primes $7, 19$ Class number $4$ Class group $[2, 2]$ Galois group $C_6$ (as 6T1)

# Related objects

Show commands for: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 7*x^4 - 5*x^3 + 53*x^2 + 97*x + 121)

gp: K = bnfinit(x^6 - x^5 - 7*x^4 - 5*x^3 + 53*x^2 + 97*x + 121, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![121, 97, 53, -5, -7, -1, 1]);

$$x^{6} - x^{5} - 7 x^{4} - 5 x^{3} + 53 x^{2} + 97 x + 121$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

 Degree: $6$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[0, 3]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$-44700103$$$$\medspace = -\,7^{3}\cdot 19^{4}$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $18.84$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $7, 19$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Gal(K/\Q)|$: $6$ This field is Galois and abelian over $\Q$. Conductor: $$133=7\cdot 19$$ Dirichlet character group: $\lbrace$$\chi_{133}(64,·), \chi_{133}(1,·), \chi_{133}(83,·), \chi_{133}(20,·), \chi_{133}(106,·)$$\chi_{133}(125,·)$$\rbrace This is a CM field. ## Integral basis (with respect to field generator $$a$$) 1, a, a^{2}, a^{3}, a^{4}, \frac{1}{5093} a^{5} - \frac{829}{5093} a^{4} - \frac{1150}{5093} a^{3} - \frac{196}{5093} a^{2} - \frac{635}{5093} a + \frac{118}{463} sage: K.integral_basis() gp: K.zk magma: IntegralBasis(K); ## Class group and class number C_{2}\times C_{2}, which has order 4 sage: K.class_group().invariants() gp: K.clgp magma: ClassGroup(K); ## Unit group sage: UK = K.unit_group() magma: UK, f := UnitGroup(K);  Rank: 2 sage: UK.rank() gp: K.fu magma: UnitRank(K); Torsion generator: $$-1$$ (order 2) sage: UK.torsion_generator() gp: K.tu[2] magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $$\frac{142}{5093} a^{5} - \frac{579}{5093} a^{4} - \frac{324}{5093} a^{3} + \frac{2726}{5093} a^{2} + \frac{6597}{5093} a - \frac{838}{463}$$, $$\frac{80}{5093} a^{5} - \frac{111}{5093} a^{4} - \frac{326}{5093} a^{3} - \frac{401}{5093} a^{2} + \frac{130}{5093} a + \frac{180}{463}$$ sage: UK.fundamental_units() gp: K.fu magma: [K!f(g): g in Generators(UK)]; Regulator: $$7.80862678603$$ sage: K.regulator() gp: K.reg magma: Regulator(K); ## Class number formula \displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{3}\cdot 7.80862678603 \cdot 4}{2\sqrt{44700103}}\approx 0.579415361406 ## Galois group C_6 (as 6T1): sage: K.galois_group(type='pari') gp: polgalois(K.pol) magma: GaloisGroup(K);  A cyclic group of order 6 The 6 conjugacy class representatives for C_6 Character table for C_6 ## Intermediate fields Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities. ## Sibling algebras  Twin sextic algebra: 3.3.361.1 \times $$\Q(\sqrt{-7})$$ \times $$\Q$$ ## Frobenius cycle types  p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 Cycle type {\href{/LocalNumberField/2.3.0.1}{3} }^{2} {\href{/LocalNumberField/3.6.0.1}{6} } {\href{/LocalNumberField/5.6.0.1}{6} } R {\href{/LocalNumberField/11.1.0.1}{1} }^{6} {\href{/LocalNumberField/13.6.0.1}{6} } {\href{/LocalNumberField/17.6.0.1}{6} } R {\href{/LocalNumberField/23.3.0.1}{3} }^{2} {\href{/LocalNumberField/29.3.0.1}{3} }^{2} {\href{/LocalNumberField/31.2.0.1}{2} }^{3} {\href{/LocalNumberField/37.1.0.1}{1} }^{6} {\href{/LocalNumberField/41.6.0.1}{6} } {\href{/LocalNumberField/43.3.0.1}{3} }^{2} {\href{/LocalNumberField/47.6.0.1}{6} } {\href{/LocalNumberField/53.3.0.1}{3} }^{2} {\href{/LocalNumberField/59.6.0.1}{6} } In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents. sage: p = 7; # to obtain a list of [e_i,f_i] for the factorization of the ideal p\mathcal{O}_K: sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)] gp: p = 7; \\ to obtain a list of [e_i,f_i] for the factorization of the ideal p\mathcal{O}_K: gp: idealfactors = idealprimedec(K, p); \\ get the data gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]]) magma: p := 7; // to obtain a list of [e_i,f_i] for the factorization of the ideal p\mathcal{O}_K: magma: idealfactors := Factorization(p*Integers(K)); // get the data magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors]; ## Local algebras for ramified primes pLabelPolynomial e f c Galois group Slope content 77.2.1.2x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2} 7.2.1.2x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
$19$19.6.4.3$x^{6} + 95 x^{3} + 2888$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$

## Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.7.2t1.a.a$1$ $7$ $x^{2} - x + 2$ $C_2$ (as 2T1) $1$ $-1$
* 1.19.3t1.a.a$1$ $19$ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$
* 1.133.6t1.j.a$1$ $7 \cdot 19$ $x^{6} - x^{5} - 7 x^{4} - 5 x^{3} + 53 x^{2} + 97 x + 121$ $C_6$ (as 6T1) $0$ $-1$
* 1.19.3t1.a.b$1$ $19$ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$
* 1.133.6t1.j.b$1$ $7 \cdot 19$ $x^{6} - x^{5} - 7 x^{4} - 5 x^{3} + 53 x^{2} + 97 x + 121$ $C_6$ (as 6T1) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.